Artyukhin545
?>

Найдите значение функции y=7, 2x+5, 9

Алгебра

Ответы

lilit-yan
Если я не ошибаюсь. Смотри на фото:
Найдите значение функции y=7,2x+5,9
fedorenkoroman
a+b+c=180^\circ\Rightarrow c = 180^\circ - a - b\\\sin a + \sin b + \sin c = \sin a + \sin b + \sin(180^\circ-a-b)=\\=\sin a + \sin b + \sin(180^\circ)\cos(a+b)-\cos(180^\circ)\sin(a+b)=\\=\sin a + \sin b + \sin (a + b)=2\sin({a+b\over 2})\cos({a-b\over2})+\sin(a+b)=\\=2\sin({a+b\over2})(\cos({a-b\over2})+\cos({a+b\over2}))=4\sin({a+b\over2})\cos({a\over2})\cos({b\over2})
Нам достаточно найти максимум при некоторых значениях a_1,\,b_1, а минимум будет иметь то же по модулю значения, но обратный знак (если есть некоторое максимальное значение при a_1,\,b_1, то взяв -a_1,\,-b_1 мы получим, что синус поменяет знак на противоположный, а косинусы сохранят знак. Если же у минимума модуль больше, чем у максимума, то также поменяем знак и получим новый максимум)
Теперь осталось найти максимум.

\sin(a)+\sin(b)+\sin(c)=2\sin({a+b\over2})\cos({a-b\over2})+\sin c\leq\\\leq2\sin({a+b\over2})+\sin(c)=2\cos({c\over2})+\sin c
Найдем наибольшее значение функции f(x)=2\cos({x\over2})+\sin x:
f'(x)=-\sin({x\over2})+\cos x\\f'(x)\ \textless \ 0\Rightarrow 1-2\sin^2{x\over2}-\sin{x\over2}\ \textless \ 0\\\sin ({x\over2})=t,\,|t|\leq1\\2t^2+t-1\ \textgreater \ 0\\2(t-{1\over2})(t+1)\ \textgreater \ 0\\t\in({1\over2};1)\Rightarrow {x\over2}\in({\pi\over6}+2\pi k;{5\pi\over6}+2\pi k),\,k\in\mathbb{Z}\\x\in({\pi\over3}+4\pi k;{5\pi\over3}+4\pi k),\,k\in\mathbb{Z}
На полученном интервале f(x) убывает. Кроме того, f(x) имеет период 4π.
Таким же образом приходим к интервалу на котором f(x) возрастает (просто меняем знак неравенства):
|t|\leq1\\2(t-{1\over2})(t+1)\ \textless \ 0\\t\in(-1;{1\over2})\Rightarrow {x\over2}\in(-{7\pi\over6}+2\pi k;{\pi\over6}+2\pi k),\,k\in\mathbb{Z}\\x\in(-{7\pi\over3}+4\pi k;{\pi\over3}+4\pi k),\,k\in\mathbb{Z}
Значит достаточно проверить значение в точках 
x={\pi\over3}+4\pi k,k\in\mathbb{Z}
Как нетрудно убедится, в этих точках
f(x)={3\sqrt3\over2}
Таким образом,
\sin a+\sin b+\sin c\leq{3\sqrt3\over2}
Но при a=b=c=60^\circ достигается это значение.

Значит максимальное значение: {3\sqrt3\over2}
Минимальное: -{3\sqrt3\over2}
Sergei_Olga658
График этой функции - прямая.

Свойства линейной функции:

1) Область определения линейной функции есть вся вещественная ось;

2) Если k ≠ 0, то область значений линейной функции есть вся вещественная ось. Если k = 0, то область значений линейной функции состоит из числа b;

3) Четность и нечетность линейной функции зависят от значений коэффициентов k и b.

a) b ≠ 0, k = 0, следовательно, y = b – четная;

b) b = 0, k ≠ 0, следовательно y = kx – нечетная;

c) b ≠ 0, k ≠ 0, следовательно y = kx + b – функция общего вида;

d) b = 0, k = 0, следовательно y = 0 – как четная, так и нечетная функция.

4) Свойством периодичности линейная функция не обладает;

5) Точки пересечения с осями координат:

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Найдите значение функции y=7, 2x+5, 9
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

galkar
novkatrina
Oslopova
Sofinskaya1185
Зинина-Олесия
Остап-Лаврова1410
Борисовна_Кашутина
selena77
aetolstih
gubernatorov00
mnn99
bichkowa-oksana
Сергеевич1907
Хасанбиевич Колесников716
Дмитрий-Олейникова