(x+2)^2(x+5) / (x^2+5)(x+10) < 0 Дробь меньше нуля, когда числитель (ч) и знаменатель (з) разных знаков: 1) Первая система: (x+2)^2(x+5) >0 (x^2+5)(x+10) <0 Решаем 1-ое нер-во: первый множитель - квадрат, он всегда неотрицательный, значит для того, чтобы произведение было положительным, надо чтобы все множители были положительными: x+5>0, x>-5 Решаем 2-ое нер-во: первый множитель всегда положительный, значит для того, чтобы произведение было отрицательным, надо чтобы второй множитель был отрицательным: x+10<0, x<-10 Получается: x>-5 и x<-10 - нет пересечений (общих решений). Данная система не имеет решения. 2) Вторая система: (x+2)^2(x+5) <0 (x^2+5)(x+10) >0 1-ое нер-во: первый множитель положительный, значит 2-ой д.б. отрицательным: x+5<0, x<-5. 2-ое нер-во: первый множитель положительный, значит и 2-ой д.б. положительным: x+10>0, x>-10. Общее решение системы: -10<x<-5 Наибольшее целое значение: x=-6
tanyamurashova11352
27.02.2022
Обозначим тупые углы трапеции как х. Так как меньшее основание и боковая сторона равны, то диагональ образует равнобедренный треугольник. Угол при вершине этого треугольника равен тупому углу трапеции, тоесть х. Обозначим углы при основании треугольника как у и выразим х через у: х=180-2у. Из условия известно, что диагональ образует с боковой стороной угол в 120 градусов, тоесть х=у+120. Теперь приравняем и решим полученное уравнение: 180-2у=у+120 => 3у=60 => у=20. Тогда тупой угол трапеции равен х=20+120=140 градусов. И в конце концов, можем найти острый угол трапеции: 180-140=40. ответ: углы трапеции 140 и 40 градусов
Дробь меньше нуля, когда числитель (ч) и знаменатель (з) разных знаков:
1) Первая система:
(x+2)^2(x+5) >0
(x^2+5)(x+10) <0
Решаем 1-ое нер-во:
первый множитель - квадрат, он всегда неотрицательный, значит для того, чтобы произведение было положительным, надо чтобы все множители были положительными: x+5>0, x>-5
Решаем 2-ое нер-во: первый множитель всегда положительный, значит для того, чтобы произведение было отрицательным, надо чтобы второй множитель был отрицательным: x+10<0, x<-10
Получается: x>-5 и x<-10 - нет пересечений (общих решений). Данная система не имеет решения.
2) Вторая система:
(x+2)^2(x+5) <0
(x^2+5)(x+10) >0
1-ое нер-во: первый множитель положительный, значит 2-ой д.б. отрицательным: x+5<0, x<-5.
2-ое нер-во: первый множитель положительный, значит и 2-ой д.б. положительным: x+10>0, x>-10.
Общее решение системы: -10<x<-5
Наибольшее целое значение: x=-6