ответ: 60 деталей. 30 деталей.
Объяснение:
Решение.
Пусть второй автомат в час изготавливает х деталей. Тогда
первый автомат изготавливает х+30 деталей.
Время на изготовление 180 деталей 1 автоматом равно 180/(х+30) часов
а время для 2 автомата равно 180/х часов.
Разница во времени равна 3 часа. Составим уравнение:
180/х - 180/(х+30) = 3;
180*(x+30) - 180x = 3x(x+30);
180x+ 5400 - 180x = 3x²+90x;
3x²+90x-5400=0; [: 3]
x²+30x-1800 = 0;
x1=30; x2= -60 - не соответствует условию
х=30 деталей изготавливает 2 автомат;
х+30 = 60 деталей изготавливает 1 автомат;
ответ: при х=1 и при х=-1
Объяснение:Точки пересечения графиков данных функций y=x²+4x+1 и y=kx можно найти, приравняв значения функций:
x²+4x+1 = kx
x²+4x+1 - kx =0
x²+(4-k)·x+1 = 0
По условию прямая y=kx и парабола y=x²+4x+1 имеют только одну общую точку, значит дискриминат полученного квадратного уравнения равен 0 (чтобы квадратное уравнение имело единственный корень), ⇒D=(4-k)² - 4·1·1= 16-8k+k²-4= k²-8k+12
k²-8k+12=0
k₁=2, k₂=6
Поэтому прямая у=2х и парабола y=x²+4x+1 имеют только одну общую точку⇒x²+4x+1 =2х⇒x²+2x+1 =0⇒ (х+1)²=0 ⇒ х=-1
прямая у=6х и парабола y=x²+4x+1 имеют только одну общую точку⇒x²+4x+1 =6х⇒ x²-2x+1 =0⇒ (х-1)² =0 ⇒ х=-1
Поделитесь своими знаниями, ответьте на вопрос:
Как х^5+y^5 превратить в симметрический !
В этом случае, можно использовать формулу для суммы нечетных степеней:
x⁵+y⁵=(x+y)(x⁴-x³y+x²y²-xy³+y⁴)=(x+y)((x⁴+2x²y²+y⁴)-xy(x²+2xy+y²)+x²y²)=
=(x+y)((x²+y²)²-xy(x+y)²+(xy)²)=(x+y)(((x+y)²-2xy)²-xy(x+y)²+(xy)²).
Т.е., если обозначить элементарные симметрические многочлены как
σ₁=x+y и σ₂=xy, то получаем
x⁵+y⁵=σ₁((σ₁²-2σ₂)²-σ₂σ₁²+σ₂²)=σ₁((σ₁²-2σ₂)²-σ₂σ₁²+σ₂²)=
=σ₁((σ₁⁴-4σ₁²σ₂+4σ₂²-σ₂σ₁²+σ₂²)=σ₁⁵-5σ₁³σ₂+5σ₁σ₂².
P.S. Для преобразования выражений в скобках несколько раз применялась стандартная школьная процедура выделения полного квадрата. Например, в скобке были слагаемые x⁴+y⁴. К ним добавили и вычли 2x²y². Получилось (x⁴+2x²y²+y⁴)-2x²y², а по формуле квадрата суммы это равно (x²+y²)²-2(xy)². Аналогично, были слагаемые -x³y-xy³. Вынесли за скобки xy, осталось -xy(x²+y²) и опять в скобках выделяем полный квадрат: x²+y²=(x²+2xy+y²)-2xy=(x+y)²-2xy.