так как касательная параллельна прямой у= 5х+4
то у этих прямых одинаковый угловой коэфициент =5
Угловой коэффициент касательной - это производная в точке касания.
у' = 6x² +12x +11
Найдем точку касания
6x² +12x +11=5
6х²+12х+6=0
6(x² +2x +1) = 0
6(x+1)² = 0
x = -1
Значит точка касания при х₀= -1
Найдем вторую координату
у₀ = 2*(-1)³+6*(-1)²+11*(-1)+8=-2 + 6 -11 +8=1
Значит точка касания (-1; 1)
уравнение касательной: у = у₀ + у' (x₀) (x - x₀)
y(-1)=1; y`(-1)=5
тогда уравнение касательной
у(кас) = 1 +5(x-(-1) = 1 +5x +5= 5x +6
D(y)=(∞;5)∪(5;∞)
ДВА промежутка - от минус бесконечности до 5, и от 5 до плюс бесконечности
Объяснение:
ОБЛАСТЬ ОПРЕДЕЛЕНИЯ - это те числа которые просто могут быть решением этого уравнения.
Ну, например, если 4 / 0 (четыре РАЗДЕЛИТЬ на ноль).. этого же НЕЛЬЗЯ делать, значит надо ИСКЛЮЧИТЬ такую возможность в этой дроби.
Вот и ВСЁ.
Вот, когда в нижней части может быть НОЛЬ ?
Да когда мы ПРИРАВНЯЕМ нижнее уравнение к этому самому нулю, и узнаем чего же не должно быть.
|x+1|-6 = 0
И теперь решаем, чего же НЕ ДОЛЖНО случиться.
То есть в модульных скобках ДОЛЖНА получиться ШЕСТЁРКА 6-6=0
|x+1| = 6
Это 5 (пять + 1 = 6)
x+1-6 = 0 ; х=6-1; х=5
Проверяем:
у = 4/|5+1|-6; у=4/ 6-6 ; не может такого быть, на НОЛЬ делить нельзя, то есть НЕ МОЖЕТ быть областью определения.
D(y)=(∞;5)∪(5;∞)
D(y) - это ОБЛАСТЬ определения
∪ - заменяет слово "объеденяет"
Поделитесь своими знаниями, ответьте на вопрос:
Найдите действительные значения x, при которых функция y=x^2-2x-8 принимает значение =-5.