Пусть скорость горной реки х
Плот плывет по реке 21 км в течение 21:х часов
Туристы на лодке все расстояние проплыли за такое же время:
54:(12+х) плыла лодка по реке + 6:12 по озеру и все это равно времени, за которое плот плывет по реке 21 км, =21:х
Составим и решим уравнение:
54:(12+х) +0,5 =21:х
Умножим обе части на х(12+х), чтобы избавиться от дробей:
54х +0,5х(12+х) =21(12+х)
54х +6х +0,5х² =252+21х
0,5х²+39х -252=0
D=b²-4ac=39²-4·0.5·-252=2025
Так как дискриминант больше нуля, то уравнение имеет два корня
Один отрицательный и не подходит ( -84)
Второй = 6
Скорость течения горной реки 6 км/ч
Объяснение:
номер 1
1) 9х-6х=21
3х=21 х=7
2) 11х-4х=28
7х=28 х=4
3) 0.6-1.6х+6.4=21-1.2х
0.4х=-14 х=(-14)*4 х= - 64
4) (12х+18)(1.6-0.2х)=0
12х+18=0 12х=-18 х= -1.5 и
1.6-0.2х=0 0.2х=1.6 х=8
ответ: х= 8 или (-1.5)
5) 16х-14=18-20+16х -14=-2
выражение не имеет смысла
номер 2
пусть в первый день они Хкм, тогда во второй 2Хкм, а в третий Х+6
х+2х+х+6=38 4х=32 х=8
ответ: за перший дiнь км
номер 3: третий день х; тогда первый 3х, 2 день= х+8;
х+3х+х+8=58;
5х= 50; х=10 ответ: 10 км за третий день
Поделитесь своими знаниями, ответьте на вопрос:
Решить показательное уравнение 7*4^(x^2)-9*14^(x^2)+2*49^(x^2)=0
7 * (2²)ˣ² - 9 * (2 * 7)ˣ² + 2 * (7²)ˣ² = 0
7 * (2ˣ²)² - 9 * 2ˣ² * 7ˣ² + 2 * (7ˣ²)² = 0
Делим обе части на 2ˣ² * 7ˣ² и получаем:
7*(2/7)ˣ² - 9 * 1 + 2 * (7/2)ˣ² = 0
Произведём замену:
(2/7)ˣ² = у
(7/2)ˣ² = 1/у
и получим уравнение:
7у - 9 + 2/у = 0
при у ≠ 0 имеем
7у² - 9у + 2 = 0
D = b² - 4ac
D = (-9)² - 4 * 7 * 2 = 81 - 56 = 25
√D = √25 = 5
у₁ = (9+5)/14 = 14/14 = 1
у₂ = (9-5)/14 = 4/14 = 2/7
Произведём обратную подстановку у = (2/7)ˣ²
1) при у₁ = 1 имеем
(2/7)ˣ² = 1
(2/7)ˣ² = (2/7)⁰
х² = 0
х₁ = 0
2) при у₂ = 2/7
(2/7)ˣ² = 2/7
(2/7)ˣ² = (2/7)¹
х² = 1
х²-1 = 0
(х-1)(х+1) = 0
х - 1 = 0 => x₂ = 1
x + 1 = 0 => x₃ = - 1
ответ: х₁ = 0;
х₂ = 1;
х₃ = - 1