X^2+7x+10<0, y=x^2+7x+10 - квадратичная функция (парабола). Находим корни по дискриминанту или по теореме Виета (Я нашёл по дискриминанту). D=b^2-4ac,D=7^2-4*1*10=49-40=9=3^2. x1= -b+√D/2a=-7+3/2= -2. x2=-b-√D/2a=-7-3/2= -5. После того,как мы нашли корни (x1,x2),отмечаем точки -5 и -2 на координатной прямой,на оси x,конечно же,после чего рисуем квадратичную функцию (параболу) : y=x^2+7x+10; при a>0,D>0. Обязательно ветви вверх,так как a>0. За пределами ветвей параболы или её области,значения удовлетворяют решению "больше" (>,+),так как нам нужны значения "меньше" (-,<),то ответом будет область не за ветвями параболы,то есть интервал (-5;-2) (знак нестрогий,поэтому интервал и скобки круглые).ответ : x∈ (-5;-2),или ответ можно записать так ; -5<x<-2.
evatautes
31.01.2020
X^2+7x+10<0, y=x^2+7x+10 - квадратичная функция (парабола). Находим корни по дискриминанту или по теореме Виета (Я нашёл по дискриминанту). D=b^2-4ac,D=7^2-4*1*10=49-40=9=3^2. x1= -b+√D/2a=-7+3/2= -2. x2=-b-√D/2a=-7-3/2= -5. После того,как мы нашли корни (x1,x2),отмечаем точки -5 и -2 на координатной прямой,на оси x,конечно же,после чего рисуем квадратичную функцию (параболу) : y=x^2+7x+10; при a>0,D>0. Обязательно ветви вверх,так как a>0. За пределами ветвей параболы или её области,значения удовлетворяют решению "больше" (>,+),так как нам нужны значения "меньше" (-,<),то ответом будет область не за ветвями параболы,то есть интервал (-5;-2) (знак нестрогий,поэтому интервал и скобки круглые).ответ : x∈ (-5;-2),или ответ можно записать так ; -5<x<-2.
Объяснение:
а) x+y+x-y=2+1
y=x-1
2x=3
y=x-1
x=1,5
y= 0,5
г) x=2y-5
(2y-5)²+(2y-5)y+y²=13
x=2y-5
4y²-20y+25+2y²-5y+y²=13
x=2y-5
7y²-25y+12=0
D= 625-336= 289
y1= (25-17)/14= 4/7
y2= (25+17)/14= 3
x1= -27/7
x2= 1
(-27/7; 4/7), (1;3)