cos5x = sin (п/2 - 5х).
sin2x + sin (п/2 - 5х) = 2sin(п/4 - 1,5х)*sin(3,5x - п/4) = 0(по условию). Данное уравнение равносильно совокупности двух уравнений:
sin(п/4 - 1,5х) = 0 и sin(3,5x - п/4) = 0.
Решаете оба (это простейшие тригонометрические уравнения типа sinx = 0), выражаете х и записываете ответ.
cosxcos2x=sinxsin2x
cosxcos2x - sinxsin2x = cos(x + 2x) = cos3x.
Следовательно, исходное уравнение равносильно простейшему тригонометрическому уравнению cos3x = 0. Записывайте решение и выражайте х. Получите ответ.
Подставляем n = 0 - неравенство не выполнено. n = 1 - неравенство не выполнено. Следовательно, при n ≥ 0 решений не будет, т.к. (-1)^n + 6n - функция возрастающая.
Пусть n = -1, тогда выражение Так как 3.14 < π < 3.15, то
-22.05 < -7π < -21.98. Очевидно, оно попадает на промежуток (-24; -18). Значит, при n = -1 решение есть на данном отрезке. Подставим n = -1 в серию корней:
Такими же рассуждениями приходим к тому, что n ≤ -2 так же не являются решениями.
Теперь рассмотрим вторую серию корней:
Тут совсем все просто: при m = 0, очевидно, неравенство не выполнено. При m = 1 так же. Так как выражение при возрастании m увеличивается, то и m ≥ 2 также не подходят.
Пусть m = -1, тогда:
Очевидно, что это так. Подставляя m = -2 понимаем, что число меньше -4.
Вопросы ниже в комменты.
ответ:
Поделитесь своими знаниями, ответьте на вопрос:
Розв'язати рівняння √x+5=0
корень равен нулю только тогда, когда подкоренное выражение равно 0⇒