nord0764
?>

Дана арифметическая прогрессия: 4;7... Вычисли разность прогрессии и третий член прогрессии. d= b3

Алгебра

Ответы

konss2

1. Найдите двенадцатый член и сумму первых двенадцати членов арифметической прогрессии (an), если a1 = 3, a2 = 7.

2. Найдите седьмой член и сумму первых шести членов геометрической прогрессии (bn), если b1 = −  и q = 2.

3. Найдите сумму бесконечной геометрической прогрессии 27, −9, 3, ... .

4. Найдите номер члена арифметической прогрессии (an), равного 6,4, если a1 = 3,6 и d = 0,4.

5. Какие два числа надо вставить между числами 2 и −54, чтобы они вместе с данными числами образовали геометрическую прогрессию?

6. При каком значении x значения выражений 2x − 1, x + 3 и x + 15 будут последовательными членами геометрической прогрессии? Найдите члены этой прогрессии.

7. Найдите сумму всех натуральных чисел, кратных 7, которые больше 100 и меньше 200.

Вариант 2

1. Найдите восьмой член и сумму первых восьми членов арифметической прогрессии (an), если a1= 1, a2 = 4.

2. Найдите четвёртый член и сумму первых пяти членов геометрической прогрессии (bn), если b1 =  и q = 3.

3. Найдите сумму бесконечной геометрической прогрессии −64, 32, −16, ... .

4. Найдите номер члена арифметической прогрессии (an), равного 3,6, если a1 = 2,4 и d = 0,2.

5. Какие два числа надо вставить между числами 8 и −64, чтобы они вместе с данными числами образовали геометрическую прогрессию?

6. При каком значении x значения выражений 3x − 2, x + 2 и x + 8 будут последовательными членами геометрической прогрессии? Найдите члены этой прогрессии.

7. Найдите сумму всех натуральных чисел, кратных 5, которые больше 150 и меньше 250.

Вариант 3

1. Найдите десятый член и сумму первых десяти членов арифметической прогрессии (an), если a1 = 2, a2 = 6.

2. Найдите третий член и сумму первых четырёх членов геометрической прогрессии (bn), если b1 = −  и q = 5.

3. Найдите сумму бесконечной геометрической прогрессии −4, 1, −  , ... .

4. Найдите номер члена арифметической прогрессии (an), равного 4,9, если a1 = 1,4 и d = 0,5.

5. Какие два числа надо вставить между числами 4 и −108, чтобы они вместе с данными числами образовали геометрическую прогрессию?

6. При каком значении x значения выражений x − 3, x + 4 и 2x − 40 будут последовательными членами геометрической прогрессии? Найдите члены этой прогрессии.

7. Найдите сумму всех натуральных чисел, кратных 9, которые больше 120 и меньше 210.

Вариант 4

1. Найдите седьмой член и сумму первых семи членов арифметической прогрессии (an), если a1 = 5, a2 = 11.

2. Найдите шестой член и сумму первых шести членов геометрической прогрессии (bn), если b1 =  и q = 2.

3. Найдите сумму бесконечной геометрической прогрессии −6, 1, −  , ... .

4. Найдите номер члена арифметической прогрессии (an), равного 8,9, если a1 = 4,1 и d = 0,6.

5. Какие два числа надо вставить между числами 3 и −192, чтобы они вместе с данными числами образовали геометрическую прогрессию?

6. При каком значении x значения выражений x − 7, x + 5 и 3x + 1 будут последовательными членами геометрической прогрессии? Найдите члены этой прогрессии.

7. Найдите сумму всех натуральных чисел, кратных 11, которые больше 100 и меньше 180.

Объяснение:

Pavlushina-Novikova

f(x)=\left\{\begin{array}{l}\Big(\dfrac{1}{2}\Big)^{x}\ ,\ \ x\leq -1\ ,\\-x\ ,\ \ -1

Исследуем поведение функции вблизи точек, где её аналитическое выражение меняется . Найдём левосторонние и правосторонние пределы в точках х= -1, х=1 , х=2 .

a)\ \ \lim\limits _{x \to -1-0}f(x)=\lim\limits _{x \to -1-0}\Big(\dfrac{1}{2}\Big)^{x}=2\ \ ,\ \ \ \lim\limits _{x \to -1+0}f(x)=\lim\limits _{x \to -1+0}(-x)=1\\\\\lim\limits _{x \to -1-0}f(x)\ne \lim\limits _{x \to -1+0}f(x)\ \ \Rightarrow

При х= -1 функция имеет разрыв 1 рода .

b)\ \ \lim\limits _{x \to 1-0}f(x)=\lim\limits _{x \to 1-0}(-x)=-1\ ,\ \ \lim\limits _{x \to 1+0}f(x)=\lim\limits _{x \to 1+0}(x^2-2)=-1\\\\f(1)=(-x)\Big|_{x=1}-1\\\\\lim\limits _{x \to 1-0}f(x)=\lim\limits _{x \to 1+0}f(x)=f(2)=-1\ \ \ \Rightarrow

При х=1 функция непрерывна.

c)\ \ \lim\limits _{x \to 2-0}f(x)=\lim\limits _{x \to 2-0}(x^2-2)=4-2=2\\\\\lim\limits _{x \to 2+0}f(x)=\lim\limits _{x \to 2+0}7^{\frac{2x}{x-2}}=7^{+\infty }=+\infty \ \ \ \Rightarrow

При х=5 функция имеет разрыв 2 рода .

График функции нарисован сплошными линиями.

На 1 рисунке нет чертежа функции   при х>2  , для которого прямая х=2 является асимптотой , так как он не умещается при данном масштабе. Этот график полностью начерчен отдельно на 2 рисунке, чтобы вы понимали, как он расположен. Но для вашей функции берётся только та часть графика, которая нарисована для х>2 сплошной линией..


Задана функция f(x). Найти точки разрыва функции, если они существуют. Сделать чертеж.
Задана функция f(x). Найти точки разрыва функции, если они существуют. Сделать чертеж.

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Дана арифметическая прогрессия: 4;7... Вычисли разность прогрессии и третий член прогрессии. d= b3
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

leonidbaryshev19623
dianakryukova00
Mikhailovich_Viktoriya
andreyduborezz2913
mlf26
Kalugin Vyacheslavovna605
kulikovtsud
Karina-evgenevna1899
kseniay2006548
avakarica
Maksimova1320
oleonov
Юлия1972
a8227775
Sazhina1356