Правильное условие такое:
Мяч брошен вертикально вверх с начальной скоростью 24 м/с. Зависимость расстояния h (в метрах) от мяча до земли от времени полета выражается формулой h = 24t − 5t² .
Дано:
V₀=24м/с
Найти: h; t
1) Скорость - это производная от расстояния.
V = h'
V = ( 24t − 5t²)'
V = 24 - 10t
Получили формулу, которая показывает зависимость скорости V
(в м/с) от времени полета t .
2) V = 24 - 10t
V - конечная скорость, которая в момент достижения мячом наибольшей высоты равна 0.
Решим уравнение и найдем время t.
0 = 24 - 10t
10t = 24
t = 24:10
t = 2,4
t=2,4 с - время полёта мяча снизу до наибольшей высоты.
3) Находим значение наибольшей высоты, на которую поднимется мяч за t=2,4c.
h=24t-5t² при t=2,4c.
h = 24·2,4 - 5·2,4² = 2,4·(24-5·2.4) = 2,4·(24-12) = 2,4·12= 28,8 м
4) Найдем tₓ все время полета от броска с земли до момента падения его на землю
tₓ = 2t = 2 · 2,4 = 4,8c
ответ: 28,8 м; 4,8c
Поделитесь своими знаниями, ответьте на вопрос:
З'ясуйте, правильною чи неправильною є нерівність: 1) 9-13> 0; 2) 14-за < 15-3а (а - довільне дійсне числодоведіть нерівність, якщо х - довільне дійсне число: 3) 4(х-3) < 3(х+1) +x; 4) (x-3)> -х(6-х).
2) приравниваем её к нулю и решаем получившееся уравнение
3) Смотрим: какие корни попали в указанный промежуток и ищем значения данной функции в этих точках и на концах данного отрезка;
4) пишем ответ.
Поехали?
1) f'(x) = ((x² -8x)'(x+1) - (x² -8x)(x+1)')/(x+1)²=
((2x-8)(x+1) - (x²-8x))/(x+1)²= (2x² -8x +2x -8 - x² +8x)/(x+1)²=
=(x² +2x -8) / (х+1)²
2)(x² +2x -8) / (х+1)² ⇒ x² +2x -8 =0, ⇒ х = - 4 и х = 2
3) Из найденных корней в указанный промежуток попало х = -4
а) х = -4
f(-4) = (-4)² -8*(-4) /(-4+1) = 48/(-2) = -24
б) х = -5
f(-5) = (-5)² -8*(-5) /(-5+1) = 65/(-4) = -13,75
в) х = -2
f(-2) = (-2)² -8*(-2)/(-2+1) = 20/(-1) = -20
4) maxf(x) = f((-2) = -20
minf(x) = f(-4) = -24