1,2 см.
Объяснение:
Точка C - середина отрезка AB, следовательно, АС = СВ = 0,8 см.
Точка O - середина отрезка AC, следовательно, ОС = 0,8 см : 2 = 0,4 см.
Следовательно: ОВ = ОС + СВ = 0,4 см + 0,8 см = 1,2 см.
Длины сторон: а = 18 см и b =18 см (квадрат со стороной 18см)
Объяснение:
Периметр прямоугольника Р = 2(а + b) = 72 см, тогда
а + b = 36 см
b = 36 - a
Площадь прямоугольника
S = a · b
S = a · (36 - a)
S = -a² + 36a
График функции S(a) - парабола веточками вниз. Максимальное значение S находится в вершине параболы.
Корни уравнения -a² + 36a = 0
а(36 - а) = 0 равны а₁ = 0 и а₂ = 36,
Вершина параболы имеет координату а = 0,5 (а₁ + а₂) = 18 (см) - это значение а, при котором S имеет наибольшую величину.
Тогда
b = 36 - 18 = 18 (cм)
Итак, прямоугольником с наибольшей площадью является квадрат со стороной. равной 18 см.
Подробнее - на -
Объяснение НРАВИТСЯ" и и "ИДЕАЛЬНЫЙ ОТВЕТ
ответ: 6см и 7см
Объяснение: пусть одна сторона=х, тогда вторая=у. Так как периметр - это сумма всех сторон,
составим 1-е уравнение, зная периметр прямоугольника: 2х+2у=26.
Площадь - это произошло его сторон и поэтому: х × у=42. Теперь составим систему уравнений:
{2х+2у=26 |÷2
{х × у=42
{х+у=13
{х×у=42
{х=13-у
{х×у=42.
Теперь подставим значение х во второе уравнение: х × у=42:
(13-у)y=42
13y-y²-42=0
-y²+13y-42=0
y²-13y+42=0
D=169-4×42=169-168=1
y1=(13-1)÷2=12÷2=6
y²=(13+1)÷2=14÷2=7;. Итак:
у1=6
у2=7.
Теперь подставим каждое значение у в уравнение: х=13-у:
х1=13-6=7см
х2=13-7=6см.
Здесь подходят оба значения х и у, и числа получаются одинаковые, разница только в обозначениях.
Поделитесь своими знаниями, ответьте на вопрос:
Точка c - середина отрезка ab, точка o - середина отрезка ac. найдите ob, если cb=0.8 см
АС=СВ=0,8 см
АО=ОС=0,8:2=0,4 см
ОВ=ОС+СВ=0,4+0,8=1,2 см