janetp
?>

Велосипедист проехал 18 километров с определённой скоростью а оставшиеся 6 со скоростью на 6км/ч меньше первоначальной .найдите скорость на втором участке пути если не весь путь он потратил 1.5 часа

Алгебра

Ответы

Vladimirovich-Aleksandrovna96
Пусть велосипедист проехал первый участок пути со скоростью Х км/ч , тогда второй участок пути он проехал со скоростью (Х–6) км/ч. Следовательно на первый участок он потратил 18/Х ч, а на второй участок 6/Х-6 ч, затратив на весь путь 1,5 часа, что равно 3/2 ч. 18/Х + 6/Х-6 = 3/2 (Приводим к общему знаменателю) 36Х–216+12Х=3Х2–18Х (Переносим все в одну сторону) 3Х2–18–36Х+216–12Х=0 3Х2-66Х+216=0 (сокращаем на три) Х2–22Х+72=0 По теореме Виета: Х1+Х2=22 Х1Х2=72 Х1=4-не соответствует условию задачи. Х=18 Второй участок пути=18-6=12км/ч
versalmoda2971

1)Определение. Первообразной для функции f называется такая функция F, производная которой равна данной функции.

2)Если F1 и F2 – две первообразные для одной и той же функции f, то они отличаются на постоянное слагаемое. ... Функция, производная которой тождественно равна нулю, является постоянной. Итак, F1 – F2 = С. Таким образом, все первообразные для функции f получаются из одной из них прибавлением к ней произвольной постоянной.

3)совокупность первообразных функции и называется непределенным интегралом от функции . Совокупность всех первообразных функции называется неопределенным интегралом от и обозначается символическим выражением , которое читается "интеграл от эф от икс по дэ икс".

4) Знак интеграла (∫) используется для обозначения интеграла в математике.

5)Множество всех первообразных F(x)+C функции f(x) называется неопределенным интегралом функции f(x) и обозначается . Символ называется интегралом, f(x) называется подынтегральной функцией, f(x)dx называется подынтегральным выражением, x называется переменной интегрирования.

6)Подынтегральное выражение представляет собой дифференциал функции f(x). Действие нахождения неизвестной функции по заданному ее дифференциалу называется неопределенным интегрированием, потому что результатом интегрирования является не одна функция F(x), а множество ее первообразных F(x)+C.

7)Если – одна из первообразных некоторой функции , то совокупность всех первообразных этой функции можно представить в виде , где C – произвольная постоянная. Функция, имеющая первообразную в некотором промежутке, называется интегрируемой, а процедуру нахождения первообразной называют интегрированием этой функции.

8)Неопределенный интеграл его свойства. ... Множество всех первообразных некоторой функции f(x) называется неопределенным интегралом функции f(x) и обозначается как ∫f(x)dx. Таким образом, если F - некоторая частная первообразная, то справедливо выражение ∫f(x)dx=F(x)+C, где C - произвольная постоянная.

9)Метод интегрирования, при котором интеграл с тождественных преобразований подынтегральной функции и применения свойств интеграла приводится к одному или нескольким табличным интегралам, называется непосредственным интегрированием.

10)Геометрически определённый интеграл выражает площадь «криволинейной трапеции», ограниченной графиком функции[⇨].

11)Формула Ньютона-Лейбница - даёт соотношение между операциями взятия определенного интеграла и вычисления первообразной. Формула Ньютона-Лейбница - основная формула интегрального исчисления. Данная формула верна для любой функции f(x), непрерывной на отрезке [а, b], F - первообразная для f(x).

12)Криволинейная трапеция – плоская фигура, ограниченная графиком неотрицательной непрерывной функции у = f(x), определенной на отрезке [a; b], осью абсцисс и прямыми х = а, х = b – см. рис.

Алена
Вот решение                                                                                         -40=49-40=9=3^2                                                                                                                                                                             x1=7+3=10                                                                                                                                                                             x2=7-3=4                                                                                                                                                                             d=1-4*12*(-6)=1+288=289=17^2                                                                                                                                                                             x1=                                                                                                                                                                             x2=                                                                                                                                                                                                                                                                                                                                                         d1=9+2=11                                                                                                                                                                             x1=                                                                                                                                                                                 x2=                                                                                                                                                                             d1=4-15=-11                                                                                                                                                                             нет корней

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Велосипедист проехал 18 километров с определённой скоростью а оставшиеся 6 со скоростью на 6км/ч меньше первоначальной .найдите скорость на втором участке пути если не весь путь он потратил 1.5 часа
Ваше имя (никнейм)*
Email*
Комментарий*