Yurevich1243
?>

A+4/4a*8a^2/a^2-16 решить это уравнение!

Алгебра

Ответы

minchevaelena23
(а+4)*8а^2/4а*(а-4)(а+4)=8а^2/4а*(а-4)=2а/(а-4)
vdk81816778

а) a1 = 30, a2 = 24, d = 24 — 30 = -6

Формула n-ого члена: a(n) = 36 — 6n

b) Найдем количество положительных чисел в этой прогрессии

{ a(n) = 36 — 6n > 0

{ a(n+1) = 36 — 6(n+1) < 0

Раскрываем скобки

{ a(n) = 36 — 6n >= 0

{ a(n+1) = 36 — 6n — 6 = 30 — 6n  < 0

Переносим n направо и делим неравенства на 6

{ 6 >= n

{ 5 < n

Очевидно, n = 5

a(5) = 36 — 6*5 = 6

a(6) = 36 — 6*6 = 0

c) Определим количество чисел, если их сумма равна -150.

S = (2a1 + d*(n-1))*n/2 = -150

(2*30 — 6*(n-1))*n = -150*2 = -300

(66 — 6n)*n = -300 = -6*50

Сокращаем на 6

(11 — n)*n = -50

n^2 — 11n — 50 = 0

(n — 25)(n + 2) = 0

Так как n > 0, то n = 25

uuks2012

-3.

Объяснение:

√(6 -2√5) - √(9+4√5) =

Заметтм, что каждое подкоренное выражение можно представить в виде квадрата суммы или разности:

6 -2√5 = 5 -2√5 + 1 = (√5)^2 -2•√5•1 + 1^2 =

(√5 -1)^2.

9 + 4√5 = 5 + 4√5 + 4 = (√5)^2 + 2•√5•2 + 2^2 =

(√5 + 2)^2.

Именно поэтому решение запишется так:

√(6 -2√5) - √(9+4√5) = √(√5 -1)^2 - √(√5 + 2)^2 = l√5 - 1l - l√5 + 2l

Выражения, записанные под знаком модуля положительные, знак модуля опускаем, не меняя знаки слагаемых в скобках:

(√5 - 1) - (√5 + 2) =

Упрощаем получившееся выражение:

√5 - 1 - √5 - 2 = -1 -2 = -3.

ответ: -3.

Использованные тождества:

а^2 - 2аb + b^2 = (a-b)^2;

а^2 + 2аb + b^2 = (a+b)^2;

√(a)^2 = lal.

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

A+4/4a*8a^2/a^2-16 решить это уравнение!
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

petrowanastya202081
алексей-Ветошкин
ella-rudenko
Bogdanov
kzhgutova
kolyabelousow4059
club-pushkin
andrew-lev2501
Николаевна
Nataliatkachenko1
mariyachervonnaya44
gsktae7
Никита
buleckovd8724
thecoffeeowl