Из города А к город В выехал велосипедист. Спустя 44 мин вслед за ним выехал мотоциклист, скорость которого на 30 км. ч больше скорости велосипедиста. Через 36 мин после своего выезда мотоциклист, обогнав велосипедиста, был на расстоянии 7 км от него. Найдите скорость велосипедиста. Пусть Х - скорость велосипедиста Х+30 скорость мотоциклиста
Найдем стороны четырехугольника АВСD: Длина вектора, заданного координатами, равна корню квадратному из суммы квадратов его координат.Чтобы найти координаты вектора, заданного координатами начала и конца, надо от координат КОНЦА отнять соответствующие координаты НАЧАЛА. АВ{1;3}, |AB|=√(1+9)=√10. BC{3;1}, |BC|=√(9+1)=√10. CD{-1;-3},|CD|=√(1+9)=√10. AD{3;1}, |AD|=√(9+1)=√10. Итак, в четырехугольнике все стороны равны. Ромбом называется параллелограмм, у которого все стороны равны. Если все противоположные стороны ПОПАРНО равны: AB = CD, BC=DA, то четырехугольник АВСD - параллелограмм. У нас выполняются оба условия, значит четырехугольник АВСD является ромбом или квадратом. Но для того, чтобы доказать, что это НЕ КВАДРАТ, определим угол между двумя соседними векторами. Угол α между вектором a и b: cosα=(x1*x2+y1*y2)/[√(x1²+y1²)*√(x2²+y2²)]. В нашем случае: cosα=(3+3)/[√(1+9)*√(9+1)] = 6/10 = 0,6. То есть угол между векторами АВ и ВС НЕ ПРЯМОЙ. Этого достаточно, чтобы доказать, что четырехугольник АВCD не квадрат. Следовательно, четырехугольник АВCD - РОМБ. Что и требовалось доказать...
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Прямая y=kx+b проходит через точки c(-1; 1) и t(2; 4 укажите уравнение этой прямой. а) y=-2x+ б)y=x+ в)y=3x-0, г)y=-4x-3 ,