Многочлен в левой части можно разложить на множители:
, где A, ..., F - некоторые целые коэффициенты. Раскроем скобки в правой части:
Многочлены равны, когда равны коэффициенты при соотвествующих степенях x. Составим систему уравнений (знак системы не пишу):
AD=2
AE+BD=5
AF+EB+CD=-5
BF+EC=-13
CF=-4
6 неизвестных и всего 5 уравнений - не айс. Но нас то, что A, ..., F - целые числа.
Взглянем на первое и последнее уравнение. Имеем 4 различных варианта значений A, D, C, F. Начинаем рассматривать, по порядку, когда найдем хотя бы одно решение системы, то все будет круто и дальше можно будет не продолжать:
A=1, D=2, C=1, F=-4:
E+2B=5
EB=-3
-4B+E=-13
Не забываем о том, что коэффициенты целые и быстро заключаем, что решением являются числа B=3, E=-1. Вот так повезло, с первого раза нашли подходящую систему. Итак
График - парабола, ветви вниз, для построения требуются доп точки. Чертим координатную плоскость, подписываем оси и отмечаем положительное направление стрелками: вправо по оси х и вверх по оси у. Отмечаем центр – точку О и единичные отрезки по обеим осям в 1 клетку. Далее заполняем таблицу: Х= 0 -2 У= 3 3
Отмечаем вершину, нули и доп точки из таблицы в системе координат, соединяем их. Подписываем график. Всё!
platonovkosty
29.05.2020
Решение: Обозначим стоимость изделий типа Б за (х) руб, тогда стоимость изделий типа А составит (2х) руб Проверим какое количество изделий типа А и типа Б должен выпускать цех, чтобы общая стоимость продукции была наибольшей. ответ А.- 100 и 50- невозможен, т.к. цех может изготавливать за сутки 100 изделий типа А или 300 изделий типа Б ответ Б. 75 и 75 75*2х+75*х=150х+75х=225х (руб) -продукции ответ В. 50 и100 50*2х+100*х=100х+100х=200х (руб) -продукции Отсюда можно сделать вывод, что цеху нужно выпускать продукции: 75 изделий типа А и 75 изделий типа Б, чтобы общая стоимость продукции была наибольшей (225х руб)
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
2x^4+5x^3-5x^2-13x-4=0 решите уравнение методом неопределенных коэффициентов
Многочлен в левой части можно разложить на множители:
, где A, ..., F - некоторые целые коэффициенты. Раскроем скобки в правой части:
Многочлены равны, когда равны коэффициенты при соотвествующих степенях x. Составим систему уравнений (знак системы не пишу):
AD=2
AE+BD=5
AF+EB+CD=-5
BF+EC=-13
CF=-4
6 неизвестных и всего 5 уравнений - не айс. Но нас то, что A, ..., F - целые числа.
Взглянем на первое и последнее уравнение. Имеем 4 различных варианта значений A, D, C, F. Начинаем рассматривать, по порядку, когда найдем хотя бы одно решение системы, то все будет круто и дальше можно будет не продолжать:
A=1, D=2, C=1, F=-4:
E+2B=5
EB=-3
-4B+E=-13
Не забываем о том, что коэффициенты целые и быстро заключаем, что решением являются числа B=3, E=-1. Вот так повезло, с первого раза нашли подходящую систему. Итак
A=1, B=3, C=1, D=2, E=-1, F=-4
Тогда
Уравнение принимает вид:
Дальше решит даже первоклассник