Для построения функции нужно проанализировать ее уравнение.
Очевидно, что функция содержит квадрат аргумента, следовательно, такая функция является квадратной. Графиком же квадратной функции будет парабола.
Узнаем, как будут направлены ветви параболы. Для этого обратим внимание на знак перед х в квадрате. Условно перед ним стоит знак «плюс», а это значит, что ветви параболы будут смотреть вверх.
Также парабола существует для любых значений аргумента х.
Найдем координаты точки, которая является вершиной параболы. Для этого используем известные формулы:
\[x_0=-\frac{b}{2a}=-\frac{0}{2\cdot 1}=0\]
\[y_0=0^2=0\]
Получили вершину данной параболы в начале координат.
В принципе, выше приведенных вычислений можно было и не выполнять, так как мы имеем простейшее уравнение параболы, для которой известно, что она симметрична координатной оси Оу и ее вершина совпадает с точкой (0; 0).
Также необходимо вычислить некоторые точки, которые построить данную параболу.
Подберем любые значения аргумента х и найдем соответствующие им значения функции. Возьмем простейшие значения х, чтобы удобнее было считать:
х = 1: y\left(1\right)=1^2=1 — точка (1; 1).
х = 2: y\left(2\right)=2^2=4 —точка (2; 4).
х = —1: y\left(-1\right)={\left(-1\right)}^2=1 —точка с координатами (—1; 1).
х = —2: y\left(-2\right)={\left(-2\right)}^2=4 —точка с координатами (—2; 4).
Покажем все пять точек на координатной плоскости и соединим их.
Даны координаты вершин пирамиды:
А1 (-10; 6; 6), А2 (-2; 8; 2), А3 (5; -7; 4), А4 (-4; 10; 9).
Найти:
1) угол между ребрами А1А2 и А1А4.
Находим векторы А1А2 и А1А4.
А1А2 = (-2-(-10); 8-6; 2-6) = (8; 2; -4), модуль равен √(64+4+16) = √84 = 2√21.
А1А4 = (-4-(-10); 10-6; 9-6) = (6; 4; 3), модуль равен √(36+16+9) = √61.
Находим косинус угла (А1А2_А1А4):
cos (А1А2_А1А4) = (8*6+2*4+(-4)*3)/( 2√21*√61) = 44/(2√1281) = 22√1281/1281.
Угол (А1А2_А1А4) = arccos(22√1281/1281) = arccos 0,614679 = 0,90882 радиан или 52,0714 градуса.
2) уравнение прямой А1А2.
По точке А1 (-10; 6; 6) и вектору А1А2(8; 2; -4) составляем уравнение:
(x + 10)/8 = (y – 6)/2 = (z – 6)/(-4).
Поделитесь своими знаниями, ответьте на вопрос:
Укажите две последовательные десятичной дроби с одним знаком после запятой, между которым заключено число" корень из 19"
4,3²и 4,4²
То есть, сначала мы находим самые близкие действительные к 19. Это √16 и √25. √16 = 4.
4.2²=17.64
4.3²=18.49
4.4²=19.36