Первое уравнение - график окружности с центром в точке (0;0), то есть в начале координат, радиусом 3.
Второе уравнение y=x^2+p, график параболы, ветви которой направлены вверх, и которая двигается по оси Oy вверх или вниз(но не влево и вправо) в зависимости от значения p. Парабола будет иметь с графиком окружности 3 точки пересечения (а значит и система будет иметь три решения), когда вершина параболы будет лежать на окружности, а две ветви параболы будут пересекать окружность в 2 точках. Вершина параболы должно лежать в точке (0; -3) чтобы это выполнялось, а значит p=-3
P.S. если что-то не понятно, напишите.
Поделитесь своими знаниями, ответьте на вопрос:
Линейная функция y=kx+m.если k1≠k2 и m1≠m2 , то как располагаются прямые на графике? каков вывод?
y`(x) = 1 - 4/x^2
Приравняем ее нулю:
1-4/x^2 = 0
4/x^2 = 1
x^2 = 4
x1 = 2, x2 = -2
Нашему промежутку соответствует точка х = 2.
Найдем вторую производную и подставим туда нашу точку, чтобы узнать что это за точка:
y``(x) = 8/x^3
y``(2) = 8/8 = 1
Положительное значение второй производной, следовательно, х = 2 - точка минимума.
Минимум равен y(2) = 2 + 4/2 = 4
На данном промежутке одна экстремальная точка, соответствующая минимума, значит график функции с обоих краев точки уходит вверх, чтобы найти максимальное значение сравним значения краев заданного промежутка:
y(1) = 1 + 4/1 = 5
y(3) = 3 + 4/3 = 4 + 1/3
y(1) = 5 больше, значит это точка максимума для данного промежутка.