1.
a)y=x/2-2
График прямая линия.
Таблица:
х -4 -3 0 1
у -4 -3,5 -2 -1,5
б)y=|x/2-2|
График две прямые линии, соединяются в точке (4; 0), как "птичка"
Таблица:
х -4 -2 0 2 4 6 8
у 4 3 2 1 0 1 2
в)у=|x|/2-2
График две прямые линии, соединяются в точке (0; -2), как "птичка"
Таблица:
х -6 -4 -2 0 2 4 6
у 1 0 -1 -2 -1 0 1
2.
а)у= -х²+2х+3
График парабола со смещённым центром, ветви направлены вниз.
Таблица:
х -2 -1 0 1 2 3 4
у -5 0 3 4 3 0 -5
у>0 при -1 <= х <=3
б)y=|-x²+2x+3|
График парабола с частью вершины, как бы отсечённой и направленной вверх, получается "выемка", ветви параболы также направлены вверх.
Таблица:
х -3 -2 -1 0 1 2 3 4 5
у 12 5 0 3 4 3 0 5 12
в)у=|-x²+2|x|+3|
График парабола, только уже две "выемки" внизу, ветви параболы направлены вверх.
Таблица:
х -5 -4 -3 -2 -1 0 1 2 3 4 5
у 12 5 0 3 4 3 4 3 0 5 12
4. Задача
х - га в день по норме
х+2 - га фактически
168га - по плану
182га - фактически
168/x - дней по плану
182/(х+2) - дней фактически
Разница в один день, уравнение:
168/x - 182/(х+2) = 1 Избавляемся от дробного выражения, общий знаменатель х(х+2):
168(х+2) - 182х=х²+2х
168х+336-182х-х²-2х=0
-х²-16х+336=0
х²+16х-336=0, квадратное уравнение, ищем корни:
х₁,₂=(-16±√256+1344)/2
х₁,₂=(-16±√1600)/2
х₁,₂=(-16±40)/2
х₁ = -28, отбрасываем, как отрицательный
х₂ = 12 (га) должны были пахать по норме в день
12+2=14 (га) вспахивали фактически
Проверка:
168 : 12 = 14 (дней по плану)
182 : 14 = 13 (дней фактически)
Разница в 1 день, всё верно.
Сделала, что смогла) По первому листочку.
Поделитесь своими знаниями, ответьте на вопрос:
Ябуду 1) выбери правильный вариант ответа. значение выражения x3y: (−4xy) равно 14x2y 14x2 −14x2 −14x2y 2) реши уравнение: (4x)11⋅(16x)2⋅4/(4x2)3⋅(64x)4=−4 ответ: x= . 3) можно ли разделить одночлен 6x9y на одночлен 2xy так, чтобы в частном снова получился одночлен? можно нет
Нули функции (-5; 0) (-1; 0) (4; 0) (10; 0)
У>0 при х∈(-5, -1) и при х∈(4, 10)
Объяснение:
а)Нули функции это точки пересечения графиком оси Ох, где у ВСЕГДА равен нулю.
Таких точек здесь 4, координаты: (-5; 0) (-1; 0) (4; 0) (10; 0)
б)Если заменить слово "аргумент" на х, а "функция" на у, то понятно, что нужно определить, при каких значениях х у>0.
На графике ясно видны эти отрезки, где функция выше оси Ох.
Таких отрезков 2: от -5 до -1 и от 4 до 10.
У>0 при х∈(-5, -1) и при х∈(4, 10)