Yelena-Svetlana
?>

S1=8cm s2 =32cm p1+p2=48cm найти р1 и р2​

Алгебра

Ответы

Anatolevna1703
Найти неопределенные интегралы. Результаты проверить
дифференцированием.
а) ∫(3x^2+4/x+cosx+1)dx=x³+4·ln IxI+sinx +x +C 
проверка:
(x³+4·ln IxI+sinx +x +C)'=3x²+4/x +cosx+1  -  верно

б) ∫[4x/√(x^2+4)]dx=    [ (x^2+4)=t     dt=2xdx ]   =∫2dt/√t=4√t+c=4√(x^2+4)+c
проверка:
(4√(x^2+4)+c)'=[4(1/2)/√(x^2+4)]·2·x =4x/√(x^2+4)  -  верно

в) ∫-2xe^xdx  =-2 ∫xe^xdx= [ x=u         e^xdx=dv  ]
                                           [ dx=du       e^x=v      ]

-2 ∫xe^xdx=-2( u·v- ∫vdu)=-2(x·e^x-∫e^x·dx)=-2(x· e^x-e^x)+c=-2·(e^x)·(x-1)+c
проверка:
(-2·(e^x)·(x-1)+c)'=-2((e^x)'·(x-1)+(e^x)·(x-1)')=-2((e^x)·(x-1)+(e^x))=-2(e^x)·x
=-2x·(e^x) - верно
galkavik

ответ: 1) (-4; -1.5) U (¹/₃; +oo) 2) (-oo; -1) U (2; 4)

Объяснение:

подобные неравенства решаются методом интервалов))

что при умножении, что при делении правила получения знака результата одинаковы:

"+" на "+" будет "+";

"-" на "+" будет "-";

"-" на "-" будет "+"... потому решения этих неравенств очень похожи))

главное --найти корни для каждого множителя/делителя или делимого

(2x+3)(3x-1)(x+4) > 0

корни: -1.5; ¹/₃; -4... определяем знак на крайнем правом промежутке (на +бесконечности) --будет "+" и при переходе через корень функция меняет знак (кратных корней нет)

---------(-4)++++++++(-1.5)---------(¹/₃)+++++++

ответ: (-4; -1.5) U (¹/₃; +oo)

\frac{(x-2)(x+1)}{x-4}

корни: 2; -1; 4... определяем знак на крайнем правом промежутке (на +бесконечности) --будет "+" и при переходе через корень функция меняет знак (кратных корней нет)

---------(-1)++++++++(2)---------(4)+++++++

ответ: (-oo; -1) U (2; 4)

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

S1=8cm s2 =32cm p1+p2=48cm найти р1 и р2​
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

спец Михасов
uttgroup
алексей-Ветошкин
ievlevasnezhana7
osuvorova7979
yyyaga
MonashevFesenko1483
ooo-helpvet44
olesyashazk5055
akarabut343
Kondratev Ruzavina22
boro-1973
lagutkins
skryabinamaria
expo3217