борисовна Елена78
?>

1) знайдіть суму перших двадцяти парних натуральних чисел 2) знайдіть суму перших тридцяти непарних натуральних чисел

Алгебра

Ответы

Ekaterina1654

1 та 2 на другiй сторiнцi, внизу.


1) знайдіть суму перших двадцяти парних натуральних чисел 2) знайдіть суму перших тридцяти непарних
1) знайдіть суму перших двадцяти парних натуральних чисел 2) знайдіть суму перших тридцяти непарних
yuliyastatsenko3894

Рассмотрим несколько случаем. На месте четной цифры мы будем писать Ч, на месте нечетной - Н. Тот факт, что число нечетное, означает, что последняя цифра у числа нечетная.

1) Число имеет вид ЧЧН. Поскольку на первом месте не может стоять 0, на первое место претендуют 3 цифры - 2, 4, 6. На второе место претендуют 4 цифры  - 0, 2, 4, 6 (а если цифры не должны повторяться, то 3 цифры). На третье место претендуют  4 цифры - 3, 5, 7, 9.

Всего получается 3·4·4=48 чисел (при второй интерпретации условия 3·3·4=36 чисел).

2) ЧНН. Здесь аналогично получается 3·4·4=48 чисел (или 3·4·3=36).

3) НЧН. Здесь 4·4·4=64 чисел (или 4·4·3=48).

4) ННН. Здесь 4·4·4=64 числа (или 4·3·2=24)

Суммарно получаем 48+48+64+64=224 чисел - если повторения цифр допускаются (или 36+36+48+24= 144 чисел если все цифры должны быть разные).

Замечание. Если цифры могут совпадать, задачу можно сделать проще . На первом место может стоять любая из цифр, кроме 0 - всего 7 вариантов. На втором месте может стоять любая цифра - всего 8 вариантов. На третьем месте может стоять любая из нечетная цифра - 4 варианта. Всего получаем 7·8·4=224 числа.

ответ: 224 чисел, в которых возможно совпадение цифр, и 144 числа, в которых все цифры разные.

choia

Рассмотрим несколько случаем. На месте четной цифры мы будем писать Ч, на месте нечетной - Н. Тот факт, что число нечетное, означает, что последняя цифра у числа нечетная.

1) Число имеет вид ЧЧН. Поскольку на первом месте не может стоять 0, на первое место претендуют 3 цифры - 2, 4, 6. На второе место претендуют 4 цифры  - 0, 2, 4, 6 (а если цифры не должны повторяться, то 3 цифры). На третье место претендуют  4 цифры - 3, 5, 7, 9.

Всего получается 3·4·4=48 чисел (при второй интерпретации условия 3·3·4=36 чисел).

2) ЧНН. Здесь аналогично получается 3·4·4=48 чисел (или 3·4·3=36).

3) НЧН. Здесь 4·4·4=64 чисел (или 4·4·3=48).

4) ННН. Здесь 4·4·4=64 числа (или 4·3·2=24)

Суммарно получаем 48+48+64+64=224 чисел - если повторения цифр допускаются (или 36+36+48+24= 144 чисел если все цифры должны быть разные).

Замечание. Если цифры могут совпадать, задачу можно сделать проще . На первом место может стоять любая из цифр, кроме 0 - всего 7 вариантов. На втором месте может стоять любая цифра - всего 8 вариантов. На третьем месте может стоять любая из нечетная цифра - 4 варианта. Всего получаем 7·8·4=224 числа.

ответ: 224 чисел, в которых возможно совпадение цифр, и 144 числа, в которых все цифры разные.

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

1) знайдіть суму перших двадцяти парних натуральних чисел 2) знайдіть суму перших тридцяти непарних натуральних чисел
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

svetegal
mkrtchyananaida6995
astenSA
izykova22
dashanna04225
av52nazarov
hamelleon43
mustaevdmitry397
Николаевич1033
kap393
janepustu
spec-nt
TOKAREVA Stepan
mmi15
Oslopova