И так. С начало нужно решить уравнение cosx=1/2. X = Pi/3 + 2Pi*k ;(2Pi)/3 +2Pi*k, Где k целое число. Теперь нам нужно сократить основное выражение. Тангенс мы пока трогать не будем, а вот дробь можно сократить. Так как 1 = cos^2x + sin^2x, то (cos^2x -1) = cos^2x - cos^2x - sin^2x, тут косинус сокращается и остается только -sin^2x. Теперь наша дробь получается вот такой -sin^2x / 3sin^2x, синусы сокращаются о выходит -1/3. Теперь вспоминаем про тангенс, который в начале и просто умножаем Tg^2x на -1/3 И получается -Tg^2x/3. Теперь вместо X подставляем два значения, которые мы нашли в самом начале (Pi/3 и (2Pi)/3) и решаем. Выходит, что -Tg^2(Pi/3)/3 = -1 И -Tg^2((2Pi)/3)/3 = Тоже -1. В итоге ответ -1
violetta152028
21.01.2021
1) Графический метод Построим график функции y = 7 - 3x (выразили переменную у из системы уравнения (1)), графиком этой функции является прямая, которая проходит через точки (0;7), (7/3; 0) Аналогично строим график функции: y = 2x - 3, прямая, которая проходит через точки (0;-3), (3/2;0)
Построим эти графики. Графики пересекаются в точке (2;1)
Окончательный ответ: (2;1).
2) Решить систему уравнения методом подстановки. {x - y = -3 { 3x - 3y = -9 |:3
{x - y = -3 {x - y = -3 Из уравнения (1) выразим переменную y y = x + 3, подставляем во (2) уравнение вместо у x - (x + 3) = -3 x - x - 3 = -3 -3 = -3
ответ: ∀ x.
3) Метод алгебр сложения {x = 3 + y { 2x - y = 7
{x - y = 3 |*(-1) { 2x - y = 7
{-x + y = -3 {2x - y = 7 Сложим уравнения -x + 2x + y - y = -3 + 7 x = 4 y = -3 + x = -3 + 4 = 1