Svetlana
?>

Решите уравнение (-18x+2x)(x+7)=0

Алгебра

Ответы

zakup-r51

х= 0; -7

Объяснение:

(-18х+2х)(х+7)=0

Т.к. произведение равно нулю, один из множителей равен нулю.

1) 2х-18х=0

-16х=0

х=0

2) х+7=0

х=-7

LYuBOV
Если пристань В выше по течению, то от А до В катер шел против течения.
Скорость катера обозначим v, скорость по течению v+3, против v-3.
AB/(v-3) = 11,5
Если катер не дойдет 100 км до В и повернет обратно в А,
то он придет в А за тоже время, то есть 11,5 часов.
(AB-100)/(v-3) + (AB-100)/(v+3) = 11,5
Получили систему
{ AB = 11,5*(v-3)
{ (11,5*(v-3) - 100)/(v-3) + (11,5*(v-3) - 100)/(v+3) = 11,5
Умножаем всё на (v-3)(v+3)
11,5*(v-3)(v+3) - 100(v+3) + 11,5*(v-3)^2 - 100(v-3) = 11,5*(v-3)(v+3)
11,5*(v^2-6v+9) - 100v - 300 - 100v + 300 = 0
Приводим подобные и умножаем всё на 2
23v^2 - 138v + 207 - 400v = 0
23v^2 - 538v + 207 = 0
D/4 = (b/2)^2 - ac = 269^2 - 23*207 = 67600 = 260^2
v1 = (-b/2 - √(D/4)) / a = (269 - 260)/23 = 9/23 - слишком мало, не подходит.
v2 = (269 + 260)/23 = 529/23 = 23 - подходит.
ответ: v = 23 км/ч
afoninia

\frac{1 + \sqrt{x} + x}{1 + \sqrt{x} } = \frac{1 + \sqrt{x} + x }{1 + \sqrt{x} } \times \frac{1 - \sqrt{x} }{1 - \sqrt{x} } = \frac{(1 + \sqrt{x} + x)(1 - \sqrt{x}) }{(1 + \sqrt{x} )(1 - \sqrt{x}) } = \frac{ {1}^{3} - {( \sqrt{x} )}^{3} }{1 - x} = \frac{1 - x \sqrt{x} }{1 - x}

Пояснение:

Выражения такого типа, когда в знаменателе сумма или разность числа и числа под корнем, избавляются от иррациональности простым методом. Вспоминаем формулу сокращенного умножения, разность квадратов:

{a}^{2} - {b}^{2} = (a - b)(a + b). В нашем примере в знаменателе сумма, то есть (a + b) из формулы. Нам нужно найти (a - b) и умножить на это дробь, чтобы потом получилось {a}^{2} - {b}^{2}, а {( \sqrt{x} )}^{2} = x, получится просто число, таким образом избавимся от корня в знаменателе. В нашем случае a — это 1, b — это \sqrt{x}. Соответственно, (a - b) — это (1 - \sqrt{x} ).

Важно отметить, что нужно умножить наше выражение не просто на (1 - \sqrt{x} ), а на \frac{1 - \sqrt{x} }{1 - \sqrt{x} }, потому что \frac{1 - \sqrt{x} }{1 - \sqrt{x} } = 1, а при умножении на 1 значение выражения не измениться. Если умножить просто на (1 - \sqrt{x} ) значение выражения поменяется.

Вот, собственно, и всё правило.

Ещё, после второго действия, второго =, была использована формула сокращённого умножения — разность кубов:

{a}^{3} - {b}^{3} = (a - b)( {a}^{2} + ab + {b}^{2} ). У нас a = 1, b = \sqrt{x}. И получается

{1}^{3} - {( \sqrt{x} )}^{3} = (1 - \sqrt{x} )( {1}^{2} + 1 \times \sqrt{x} + \sqrt{x} \times \sqrt{x} ) = (1 - \sqrt{x} )(1 + \sqrt{x} + x).

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Решите уравнение (-18x+2x)(x+7)=0
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

zolotayaoxana1982
manu95957
leeteukism
ele922009226536
krisrespect
milaudina
pizniak
elozinskaya
xalina85
zaha98
Khlistova1488
Galina-Marat1096
fednik3337923
rimmatrotskaia303
Khlustikova_Borisovna