Таким образом, левую часть исходного уравнения можно представить в виде произведения : (x + 3)(3x + 1)(x² + 1) = 0.
Отсюда видим, что это уравнение имеет 2 очевидных корня:
х = -3 и х = -1/3. Последний множитель не может быть равен нулю.
Тогда ответ: произведение корней равно -3*(-1/3) = 1.
janepustu
26.05.2023
Весь объем работы (задание) = 1 Время , требуемое для выполнения работы самостоятельно: I комбайн х ч. II комбайн (х+5) ч. Производительность труда при работе самостоятельно: I комбайн 1/х объема работы в час II комбайн 1/(х+5) об.р./час Производительность труда при совместной работе: 1/х + 1/(х+5) = (х+5+х)/ х(х+5) = (2х+5)/(х² +5х) об.р./час Время работы совместно = 6 часов. Уравнение. 6 * [ (2х+5)/(х² +5х) )] = 1 x² +5x ≠ 0 ⇒ x≠0 ; х≠ -5 (2х +5) /(х² + 5х) = 1/6 1(х² +5х) = 6(2х +5) х² +5х = 12х + 30 х² + 5х - 12х - 30 = 0 x² - 7x - 30 = 0 D=(-7)² - 4*1*(-30) = 49 + 120= 169 = 13² D>0 два корня уравнения х₁= (7 - 13) /(2*1) = -6/2=-3 - не удовлетворяет условию задачи х₂ = (7+13)/2 = 20/2 = 10 (ч.) время , требуемое I комбайну , для выполнение объема работы самостоятельно.
Проверим: 10 + 5 = 15 (ч.) потребуется II комбайну для выполнения задания самостоятельно 6 * (1/10 + 1/15 ) = 6 * [ (3+2)/30 ] = 6 * 1/6 = 1 - всё задание выполнено за 6 часов.
ответ: за 10 часов может выполнить задание первый комбайн, работая один.
Дано уравнение 3x⁴ + 10x³ +6x² + 10x +3 =0.
Попытаемся найти корень уравнения среди множителей свободного члена(1; -1; 3; -3). Подставив эти значения в уравнение, находим,что
х = -3 это корень уравнения.
Разделим заданное уравнение на (х + 3).
3x⁴ + 10x³ +6x² + 10x +3| x + 3
3x⁴ + 9x³ 3x³ + x² + 3x + 1
x³ + 6x²
x³ + 3x²
3x² + 10x
3x² + 9x
x + 3
x + 3
0.
Полученный результат 3x³ + x² + 3x + 1 перекомпануем:
(3x³ + 3x) + (x² + 1) = 3x(x² + 1) + (x² + 1) = (3x + 1)(x² + 1).
Таким образом, левую часть исходного уравнения можно представить в виде произведения : (x + 3)(3x + 1)(x² + 1) = 0.
Отсюда видим, что это уравнение имеет 2 очевидных корня:
х = -3 и х = -1/3. Последний множитель не может быть равен нулю.
Тогда ответ: произведение корней равно -3*(-1/3) = 1.