Объяснение:
2.
a) 3x+12>4x-1 | (-x>-13) /-1 | x<13
7-2x<=10-3x | -3 <= -x /-1 | x <= 13. x принадлежит (-∞; 13].
б) 2x-9 > 6x+1 | (-4x > 10) / -4 | x<10
( - < 2 ) *-2 | x > 4. x принадлежит (-∞; 10) и (4; +∞).
3.
а) Взводим все в квадрат
8x+32 => 0
8x => 32 делим все на 8
x => 4. x принадлежит [4; +∞).
б) Взводим все в квадрат
3-x-2x+1 => 0
4 => 3x Делим все на 3
1.3 => x
x <= 1.3. x принадлежит [-∞; 1.3).
4.
а-7 => 0 3-2a => 0
a => 7 3 => 2a
1.5 => a ответ: a принадлежит [7; +∞).
Для того, чтобы найти решение уравнения -15 = 3t(2 - t) мы начнем с того, что выполним открытие скобок в правой части уравнения.
Итак, откроем скобки и получим:
-15 = 3t * 2 - 3t * t;
-15 = 6t - 3t2;
3t2 - 6t - 15 = 0;
Разделим на 3 обе части уравнения и получим:
t2 - 2t - 5 = 0;
Вычислим прежде всего дискриминант уравнения:
D = b2 - 4ac = (-2)2 - 4 * 1 * (-5) = 4 + 20 = 24;
Вычислим корни уравнения следующим образом:
x1 = (-b + √D)/2a = (2 + √24)/2 * 1 = (2 + 2√6)/2 = 1 + √6;
x2 = (-b - √D)/2a = (2 - √24)/2 * 1 = (2 - 2√6)/2 = 1 - √6.
Поделитесь своими знаниями, ответьте на вопрос:
Наименьшее целое решение неравенства 3(x−2)−11≥2(x−3) равно
Я проверил, всё верно пример ришен.