Если ещё не изучено понятие производной, то решение может быть таким:
1. -2;
2. 3.
Объяснение:
1.Sn=6n-n^2
a1 = S1 = 6•1 - 1^2 = 5;
a1+a2 = S2 = 6•2 - 2^2 = 12 - 4 = 8;
a2 = S2 - S1 = 8 - 5 = 3.
Найдём d:
d = a2 - a3 = 3 - 5 = -2.
2. Sn=6n-n^2
Рассмотрим квадратичную функцию
у = 6х - х^2.
Графиком функции является парабола
у = - х^2 + 6х
Ветви параболы направлены вниз, своего наибольшего значения функция достигает в вершине параболы. Найдём её координаты:
х вершины = -b/(2a) = -6/(-2) = 3.
y вершины = - 3^2 +6•3 = -9+18 = 9.
Наибольшего значения 9 функция у = - х^2 + 6х достигает при х = 3.
Так как 3 - натуральное число, то и наша функция Sn=6n-n^2, определённая только для натуральных n, достигает наибольшего значения 9 при n = 3.
Необходимо взять три первых члена прогрессии, чтобы их сумма была наибольшей и равной 9.
ответить на второй вопрос можно и по-прежнему другому:
Sn=6n-n^2
- n^2 + 6n = - (n^2 - 6n) = - (n^2 -2•n•3 + 9 - 9) = - ((n-3)^2 -9) = - (n-3)^2 + 9.
Так как слагаемое 9 постоянно, a - (n-3)^2 неположительно для любого n, то наибольшей сумма будет тогда, когда наибольшим будет первое слагаемое, т.е. когда - (n-3)^2 = 0, при n = 3.
В этом случае Sn = - (n-3)^2 + 9 = 0 + 9 = 9.
Поделитесь своими знаниями, ответьте на вопрос:
Найдите значение выражения: 1/3а2 + 3b3 при а= -3 и b= -2. 2.Решите систему уравнений: 5(х – у)=10, 3х - 7у=20 – 2(х + у 3.Разложите на множители: а) 5а2 + 20а +20; б) х – у – 2х2 + 2у2. 4.Велосипедист должен был проехать весь путь с определенной скоростью за 2 ч. Но он ехал со скоростью, превышающей намеченную на 3 км/ч, а поэтому на весь путь затратил 1 2/3ч. Найдите длину пути. 5.а) Постройте график функции у=2 – 3х. б) Принадлежит ли графику этой функции точка N(9; -25)?
2) 4+7=11 (ч) - общее время в пути.
3) 640-35=605 (км)
4) 605:11=55 (км/ч) - скорость машины.
5) 55+5=60 (км/ч) - скорость поезда Предположим, что скорость поезда х км/ч, тогда скорость машины (х-5) км/ч, также из условия задачи известно, что за 4 часа езды на машине и 7 часов езды на поезде туристы проехали 640 км
согласно этим данным составим и решим уравнение:
4(х-5)+7х=640
4х-20+7х=640
11х-20=640
11х=640+20
11х=660
х=660:11
х=60 (км/ч) - скорость поезда.
х-5=60-5=55 (км/ч) - скорость машины Предположим, что скорость машины х км/ч, тогда скорость поезда (х+5) км/ч, также из условия задачи известно, что за 4 часа езды на машине и 7 часов езды на поезде туристы проехали 640 км
согласно этим данным составим и решим уравнение:
4х+7(х+5)=640
4х+7х+35=640
11х+35=640
11х=640-35
11х=605
х=605:11
х=55 (км/ч) - скорость машины.
х+5=55+5=60 (км/ч) - скорость поезда Предположим, что скорость поезда х км/ч, а скорость машины у км/ч, также из условия задачи известно, что за 4 часа езды на машине и 7 часов езды на поезде туристы проехали 640 км, а зная, что скорость поезда больше скорости машины на 5 км/ч
составим и решим систему уравнений:
(км/ч) - скорость машины.
(км/ч) - скорость поезда.
ответ: скорость поезда 60 км/ч.
Проверка:
1) 55·4=220 (км) - проехали туристы на машине.
2) 60·7=420 (км) - проехали туристы на поезде.
3) 220+420=640 (км) - весь путь.