1)Решение системы уравнений х=8
у=1
2)Решение системы уравнений х=20
у=15
3)Решение системы уравнений х=1
у= -10
4)Решение системы уравнений х=20
у=3
5)Решение системы уравнений х=2
у=2
Объяснение:
1)Решите систему уравнений: {x+y=9 x-2y=6
Умножим второе уравнение на -1 и решим методом алгебраического сложения:
Смысл метода алгебраического сложения в том, чтобы при сложении уравнений одно неизвестное взаимно уничтожилось. То есть, чтобы коэффициенты при неизвестном каком-то были одинаковыми, но с противоположными знаками. Для того, чтобы этого добиться, преобразовывают уравнения, можно умножать обе части уравнения на одно и то же число, делить.
x+y=9
-х+2у= -6
Складываем уравнения:
х-х+у+2у=9-6
3у=3
у=1
Подставим значение у в любое из двух уравнений системы и вычислим х:
x+y=9
х=9-у
х=9-1
х=8
Решение системы уравнений х=8
у=1
2)Решите систему уравнений :-x+2y=10 3y-x=25
Умножим первое уравнение на -1 и решим методом алгебраического сложения:
х-2у= -10
3y-x=25
Складываем уравнения:
х-х-2у+3у= -10+25
у=15
Подставим значение у в любое из двух уравнений системы и вычислим х:
3y-x=25
3*15-х=25
-х=25-45
-х= -20
х=20
Решение системы уравнений х=20
у=15
3)Решите систему уравнений: -x-y=9 3x-y=13
Умножим первое уравнение на 3 и решим методом алгебраического сложения:
-3х-3у=27
3x-y=13
Складываем уравнения:
-3х+3х-3у-у=27+13
-4у=40
у= -10
Подставим значение у в любое из двух уравнений системы и вычислим х:
-x-y=9
-х=9+у
х=-у-9
х=10-9
х=1
Решение системы уравнений х=1
у= -10
4)Решите систему уравнений: x-y=17 5x+y=103
Умножим первое уравнение на -5 и решим методом алгебраического сложения:
-5х+5у= -85
5x+y=103
Складываем уравнения:
-5х+5х+5у+у= -85+103
6у=18
у=3
Подставим значение у в любое из двух уравнений системы и вычислим х:
x-y=17
х=17+у
х=17+3
х=20
Решение системы уравнений х=20
у=3
5)Решите систему уравнений: 3x-7y= -8 2x+5y=14
Разделим второе уравнение на 2 для удобства вычислений:
2x+5y=14/2
х+2,5у=7
Выразим х через у в этом уравнении, подставим выражение в первое уравнение и вычислим у:
х=7-2,5у
3(7-2,5у)-7y= -8
21-7,5у-7у= -8
-14,5у= -8-21
-14,5у= -29
у= -29/-14,5
у=2
Подставим значение у в любое из двух уравнений системы и вычислим х:
2x+5y=14
2х=14-5у
2х=14-5*2
2х=4
х=2
Решение системы уравнений х=2
у=2
Поделитесь своими знаниями, ответьте на вопрос:
Найдите куб разности 19 и 25
Графики функций у=kx+l и y=x²+bx+c при k= -3; l= -8; b=7; c=16 пересекаются в точках A(-4; 4) и B(-6; 10).
Объяснение:
у=kx+l y=x²+bx+c A(-4; 4); B(-6; 10)
1)Составим уравнение прямой у=kx+l по формуле:
(х-х₁)/(х₂-х₁) = (у-у₁)/(у₂-у₁)
Значения х и у - координаты точек.
х₁= -4 у₁=4
х₂= -6 у₂=10
Подставляем значения х и у в формулу:
(х-(-4)/(-6)-(-4) = (у-4)/(10-4)
(х+4)/(-2) = (у-4)/6 перемножаем крест-накрест, как в пропорции:
6х+24= -2у+8
2у= -6х+8-24
2у= -6х-16
у= -3х-8, искомое уравнение.
k= -3 l= -8.
2)y=x²+bx+c A(-4; 4); B(-6; 10)
Используя координаты данных точек, составим систему уравнений:
4=(-4)²+b*(-4)+c
10=(-6)²+b*(-6)+c
Произвести необходимые действия:
4=16-4b+c
10=36-6b+c
Выразим с через b в двух уравнениях:
-с=16-4b-4 -с=12-4b
-c=36-6b-10 -c=26-6b
Приравняем правые части уравнений, так как левые равны:
12-4b=26-6b
-4b+6b=26-12
2b=14
b=7
Теперь вычислим с:
-с=12-4b
-с=12-4*7
-с=12-28
-с= -16
с=16
Подставляем полученные значения b и c в уравнение:
у=x²+7x+16, искомое уравнение.