Задание 1: образовать краткую форму прилагательных. Изменить по родам и числам
Светлый, могучий, вкусный ( )
Задание 2: найти и подчеркнуть краткие прилагательные в предложении как член
предложения
Мандарин удивительно свеж. Во время каникул школа пуста. Новогодняя елка очень красива. Воздух
так чист и свеж, как поцелуй ребенка, солнце ярко, небо сине. ( )
Задание 3: образуйте степени сравнения прилагательных (простые и составные)
(1) Бойкий, (2) звонкий, (3) красивый, (4) хороший, (5) сладкий. ( )
Задание 4: вставьте, где необходимо, пропущенные буквы н или нн.
Ремесле..ый, пенсио..ый, глиня..ый, звери..ый, бульо..ый, инфекцио..ый, единовреме..ый,
муравьи..ый, стекля..ый
( )
Объяснение:
Поделитесь своими знаниями, ответьте на вопрос:
(1-1/11+1/121) : (8/20+4/12)= 1-10 в четвёртой степени /99:0, 16/25=
zₓ'=((x+2y)*y²)ₓ'=(xy²+2y³)ₓ'=(xy²)ₓ'+(2y³)ₓ'=y²+0=y²
Частная производная по у (при переписывании вместо а надо писать у, в предложенных индексах нет такой буквы, потому использую а:
zₐ'=((x+2y)*y²)ₐ'=(xy²+2y³)ₐ'=(xy²)ₐ'+(2y³)ₐ'=2xy+6y²
в) zₓ'=(9(x-y²)⁴)ₓ'=9*((x-y²)⁴)ₓ'*(x-y²)ₓ'=9*4*(x-y²)³*1=36(x-y²)³
zₐ'=((9(x-y²)⁴)ₐ'=9*((x-y²)⁴)ₐ'*(x-y²)ₐ'=9*4*(x-y²)³*(-2y)=-72y(x-y²)³
б) zₓ'=(cos(2x+e^y))ₓ'=(cos(2x+e^y))ₓ'*(2x+e^y)ₓ'=-sin(2x+e^y)*2=-2sin(2x+e^y)
zₐ'=(cos(2x+e^y))ₐ'=(cos(2x+e^y)ₐ'*(2x+e^y)ₐ'=-sin(2x+e^y)*e^y