число делится на 7 тогда и только тогда, когда результат вычитания удвоенной последней цифры из этого числа без последней цифры делится на 7 (например, 364 делится на 7, так как 36 — (2 × 4) = 28 делится на 7).
либо использовать модификацию признака деления на 1001=10³+1, которое само делится на 7: для того, чтобы натуральное число делилось на 7 необходимо и достаточно, чтобы сумма чисел, образующих нечётные группы по три цифры (начиная с единиц) взятых со знаком «+» и чётных со знаком «-» делилась на семь (например, число 689255. первая группа со знаком «+» (689), вторая со знаком «-» (255). отсюда 689—255 = 434. в свою очередь 434 : 7 = 62).
ещё один признак — берём первую цифру, умножаем на 3, прибавляем следующую (здесь можно взять остаток от деления на 7 от получившегося числа). и далее — сначала: умножаем на 3, прибавляем следующую… для 364: 3 * 3 + 6 = 15. остаток — 1. далее 1 * 3 + 4 = 7.
число делится на 13 тогда и только тогда, когда число его десятков, сложенное с учетверённым числом единиц, кратно 13 (например, 845 делится на 13, так как 84 + (4 × 5) = 104 делится на 13).
1) 3x+2y+z-2x-2y-z=55-40; x+y=15; x=15-y.
2) 30+y+z=40 y+z=10
45-y+z=55; y-z= -10 y=0.
3) 2x+z=40
3x+z=50; x=15
z=10;
y=0
Поделитесь своими знаниями, ответьте на вопрос:
Пятый член прогрессии равен 3/2, а знаменатель прогрессии равен -1/2.найдите сумму первых пяти членов этой прогрессии
сумма вычисляется по формуле s(n) = b1(q^n - 1) / q-1
1)найдём b1 через соотношение b(5) = b(1) * q^4; b(1) = b(5) / q^4 = 3/2 / 1/16 = 24
2)теперь найдём s(5)
s(5) = /2)^5 - 1) / -1.5 = 24(-1/32 - 1) / -1.5 = 16.5