1. Аргумент функции - это независимая переменная. 2. Функция - это закон отображения множества Х на множество У - каждому значению х из множества Х соответствует одно единственное значение у из множества У. 3. Область определения функции - это множество допустимых значений аргумента. 4. График функции - это угеометрический образ функции, которые отображает множество точек плоскости, абсциссы и ординаты, связанных данной функцией. 5. Функцию называют линейной, если она задана формулой kx+b, где k - коэффициент прямой пропорциональности, b - свободный член (некое число). Линейную функцию называют функцией прямой пропорциональности, потому, что значения х прямопропорционпльны значениям у. 6. Графиком линейной функции является прямая, угол наклона которой задан коэффициентом k, а распотожение относительно оси 0Х задано свободным членом функции b/
household193
30.03.2022
Решение: х^2 - 22х - 23 = 0 Найдем дискриминант квадратного уравнения: D = b2 - 4ac = (-22)2 - 4·1·(-23) = 484 + 92 = 576 Так как дискриминант больше нуля то, квадратное уравнение имеет два действительных корня: x1 = (22 - √576) / 2*1 = (22 - 24) / 2 = -1 x2 = (22 + √576) / 2*1 = (22 + 24) / 2 = 23
2. Функция - это закон отображения множества Х на множество У - каждому значению х из множества Х соответствует одно единственное значение у из множества У.
3. Область определения функции - это множество допустимых значений аргумента.
4. График функции - это угеометрический образ функции, которые отображает множество точек плоскости, абсциссы и ординаты, связанных данной функцией.
5. Функцию называют линейной, если она задана формулой kx+b, где k - коэффициент прямой пропорциональности, b - свободный член (некое число). Линейную функцию называют функцией прямой пропорциональности, потому, что значения х прямопропорционпльны значениям у.
6. Графиком линейной функции является прямая, угол наклона которой задан коэффициентом k, а распотожение относительно оси 0Х задано свободным членом функции b/