Х^2-11x+30= ((x)^2-2*x*11/2+(11/2)^2-(11/2)^2)+30=(x-11/2)^2-(11/2)^2+30=(x-11/2)^2-121/4+120/4=(x-11/2)^2-(1/2)^2=(x-11/2-1/2)(x-11/2+1/2)=(x-5)(x-6)=0, из этого следует, что x1=5, а x2=6 9x^2-12x-5=((3x)^2-2*3x*2-(2)^2+(2)^2)-5=(3x-2)^2-(2)^2-5=(3x-2)^2-4-5=(3x-2)^2-9=(3x-2)^2-(3)^2= (3x-2-3)(3x-2+3)=(3x-5)(3x-1)=0 x1=5/3 x2=1/3 но я не уверен, что 2-ой правильно вот второй вариант решения: 9x^2-12x-5=((3x)^2-2*3x*2-(2)^2+(2)^2)-5=(3x-2)^2+(2)^2-5=(3x-2)^2+4-5=(3x-2)^2-1=(3x-2)^2-(1)^2= (3x-2-1)(3x-2+1)=(3x-3)(3x-1)=0 x1=1 x2=1/3 мне кажется второе правильнее
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Найдите все решения уравнения cos2x+sin в квадрате х = cosx
cos(2x)+sin^2(x)=cos(x)
1-2sin^2(x)+sin^2(x)-cos(x)=0
sin^2(x)+cos(x)-1=0
1-cos^2(x)+cos(x)-1=0
cos^2(x)-cos(x)=0
cos(x)(cos(x)-1)=0
cos(x)=0
x=pi/2+pin
cos(x)-1=0
cos(x)=1
x=2pin
ответ: pi/2+pin
2pin