1.
а) 25 и 65
б) 50 и 40
2.
50см и 60 градусов
Объяснение:
1. Если у тебя это радиусы к точке касания, то треугольник АОВ равен треугольнику АОС по двум катетам(радиусы равны и отрезки касательных тоже). т.е. угол 2 равен ВОС/2, а угол 1 соответственно 90 - угол 2
а) угол 2 = 130/2 = 65
угол 1 = 90 - 65 = 25
б) угол 2 = 80/2 = 40
угол 1 = 90 - 40 = 50
2. Треугольник АОВ прямоугольный с углом в 30 градусов, зн АО = 2 ВО(гипотенуза в два раза больше катета против угла 30 градусов). Ну а угол АОВ равен 90 минус угол ОАВ.
АО = 2 * 25 = 50 см
угол АОВ = 90 - 30 = 60
Объяснение:
Дано: tg a + ctg a = 9.
Примем tg a = t, ctg a = 1/t.
Подставим в заданное уравнение: t + 1/ t = 9.
Приведя к общему знаменателю, получаем квадратное уравнение:
t² - 9t + 1 = 0.
Квадратное уравнение, решаем относительно t:
Ищем дискриминант:
D=(-9)^2-4*1*1=81-4=77;
Дискриминант больше 0, уравнение имеет 2 корня:
t_1 = (√77-(-9))/(2*1) = (√77+9)/2 = √77/2+9/2=√77/2+4.5 ≈ 8.887482
t_2 = (-√77-(-9))/(2*1) = (-√77+9)/2 = -√77/2+9/2 = -√77/2+4.5 ≈ 0.112518.
Так как 1/8,887482 = 0,112518, а 1/8,887482 = 0,112518, то мы получили 2 пары значений тангенса и котангенса угла.
Далее используем формулы перехода от одной функции к другой.
sin α = tg α/+-√(1 + tg²α) = (√77/2+4.5)/(√(1 + (√77/2+4.5)²) = √((9-√77)/18) ≈ 0,111812 .
Аналогично для второго значения тангенса находим:
sin α = √((9+√77)/18) ≈ 0,993729.
Косинусы равны обратным значениям синусов.
cos α = √((9+√77)/18) ≈ 0,993729.
cos α = √((9-√77)/18) ≈ 0,111812 .
Поделитесь своими знаниями, ответьте на вопрос:
Докажите что четырехугольник, все углы которого равны между собой, является прямоугольником