7. Реши задачу.
120 м, а ширина
а) Длина участка прямоугольной формы
в 3 раза меньше. Найди периметр данного участка.
оошем такой же пери7. Реши задачу.
120 м, а ширина
а) Длина участка прямоугольной формы
в 3 раза меньше. Найди периметр данного участка.
оошем такой же пери7. Реши задачу.
120 м, а ширина
а) Длина участка прямоугольной формы
в 3 раза меньше. Найди периметр данного участка.
оошем такой же пери7. Реши задачу.
120 м, а ширина
а) Длина участка прямоугольной формы
в 3 раза меньше. Найди периметр данного участка.
оошем такой же пери7. Реши задачу.
120 м, а ширина
а) Длина участка прямоугольной формы
в 3 раза меньше. Найди периметр данного участка.
оошем такой же пери7. Реши задачу.
120 м, а ширина
а) Длина участка прямоугольной формы
в 3 раза меньше. Найди периметр данного участка.
оошем такой же пери7. Реши задачу.
120 м, а ширина
а) Длина участка прямоугольной формы
в 3 раза меньше. Найди периметр данного участка.
оошем такой же пери7. Реши задачу.
120 м, а ширина
а) Длина участка прямоугольной формы
в 3 раза меньше. Найди периметр данного участка.
оошем такой же пери7. Реши задачу.
120 м, а ширина
а) Длина участка прямоугольной формы
в 3 раза меньше. Найди периметр данного участка.
оошем такой же пери7. Реши задачу.
120 м, а ширина
а) Длина участка прямоугольной формы
в 3 раза меньше. Найди периметр данного участка.
оошем такой же пери7. Реши задачу.
120 м, а ширина
а) Длина участка прямоугольной формы
в 3 раза меньше. Найди периметр данного участка.
оошем такой же пери7. Реши задачу.
120 м, а ширина
а) Длина участка прямоугольной формы
в 3 раза меньше. Найди периметр данного участка.
оошем такой же пери
Проведём построения и введём обозначения, как показано на рисунке. Рассмотрим треугольники AOH и BOH, они прямоугольные, стороны AO и OB равны как радиусы окружностей, OH — общая, следовательно, треугольники AOH и HOB равны. Откуда AH=BH= дробь, числитель — AB, знаменатель — 2 =10. Аналогично, равны треугольники COK и KOD, откуда CK=KD. Рассмотрим треугольник BOH, найдём OB по теореме Пифагора:
OB= корень из { OH в степени 2 плюс BH в степени 2 }= корень из { 24 в степени 2 плюс 10 в степени 2 }=26.
Рассмотрим треугольник OKD, он прямоугольный, из теоремы Пифагора найдём KD:
KD= корень из { OD в степени 2 минус OK в степени 2 }= корень из { OB в степени 2 минус OK в степени 2 }= корень из { 26 в степени 2 минус 10 в степени 2 }=24.
Таким образом, CD=2KD=2 умножить на 24=48.
ответ: 48.
Поделитесь своими знаниями, ответьте на вопрос:
сначала сухая часть ягод составляет 1% (100 - 99 = 1)
1% от 100 кг = 1 кг - столько весит сухая часть ягод
после долгого хранения вес сухой части не изменился, испарилась только вода.
то есть этот 1 кг теперь составляет 100 - 98 = 2 %
составим пропорцию:
х кг / 100 % = 1кг / 2%
отсюда: х =50 кг
ответ: ягоды весят 50 кг