Максим
?>

Назовите градусную меру угла, на который поворачивается минутная стрелка в течение 20 минут

Геометрия

Ответы

Varvara
Минутная поворачивается на 360 градусов за 60 минут, следовательно за 1 минуту поворачивается на 360/60=6 градусов.  откуда находим, что за 20 минут повернется 20*6=120 градусов! ответ: 120 градусов!
озерская_Мария1234

6. DB = 13см

Объяснение:

#5

∆ЕОМ = ∆КОМ по 1 признаку (ЕО=ОК; ЕМ=КМ; <ЕОМ= <КОМ) => <ОМЕ = <КМО (как соответствующие элементы)

∆ЕСМ = ∆КСМ по 1 признаку (ЕМ=КМ; СМ- общая; <ЕМС = <КМС)

Что и требовалось доказать

#6

1) Из чертежа мы видим, что <ОАВ = <ОВА => ∆ОАВ - р/б => ОА=ОВ

Раз <САВ = <DBA и <ОАВ = <ОВА => <САО= <DBO

∆САО = ∆DBO по 2 признаку (АО=ОВ; <САО = <DBO; <СОА = <DOВ как вертикальные)

Что и требовалось доказать

2) Из доказанного выше: ∆САО = ∆DBO => CA=DB (как соответствующие элементы) => DB=13см

abahtina582

См. чертеж.

Построенные окружности "демонстрируют" скрытые связи, которые есть в конструкции. Если их мысленно убрать, получится построение из условия задачи.

Так как EC перпендикулярно AB, точка Е лежит на окружности. построенной на BC, как на диаметре, и центром этой окружности будет середина BC - точка O. Точно также - точка D. Аналогично, L - середина BE, H - середина CD.

Первое. Я собираюсь доказать, что FE = DG; но делать я это буду "через Китай". Пусть точка K - середина ED. Если удастся доказать, что K лежит на радикальной оси окружностей (BFE) и (DGC), то из этого автоматически будет следовать FE = DG

Про радикальную ось этих окружностей известно две вещи. Во-первых, она перпендикулярна линии центров LH; во-вторых, она проходит через точку A, поскольку точка A - радикальный центр всех трех окружностей, изображенных на чертеже. В самом деле, AB и AC - радикальные оси пар окружностей (BFE) (BCED) и (DGC) (BCDE), а значит, их общая точка имеет равные степени относительно (BFE) и (DGC) (я повторил доказательство теоремы о радикальном центре).

Таким образом, задача свелась к тому, что надо доказать перпендикулярность AK и LH.

Треугольники ADE и ABC подобны, => AO и AK - соответствующие медианы в подобных треугольниках (я пока не знаю, понадобится ли это для решения).

Четырехугольник KHOL - параллелограмм Вариньона для четырехугольника BEDC; его стороны параллельны BD и CE и равны их половинам. => ∠KHO = ∠BAC; (стороны этих углов взаимно перпендикулярны)  кроме того, KH = CE/2 = AC*sin(A)/2; HO = BD/2 = AB*sin(A)/2; то есть треугольники ABC и KHO подобны с коэффициентом sin(A)/2; => треугольник KHO подобен треугольнику EAD, Стороны их одинаково ориентированы (см чертеж, например, ясно, что при повороте на "минус" 90°, то есть по часовой стрелке, и каком-то сдвиге и сжатии, соответствующие стороны переходят друг в друга, EA -> KH; AD -> HO;) => существует поворотная гомотетия, переводящая EAD -> KHO, при этом угол поворота равен 90°, поскольку стороны взаимно перпендикулярны. Ясно, что при этом AK -> HP (Р - точка пересечения диагоналей параллелограмма KHOL, и => середина KO и HL); поэтому AK перпендикулярно HP чтд.

Итак, K лежит на радикальной оси окружностей (BFE) и (DGC), и поскольку KE = KD, EF = DG; (в переводе на "человеческий" язык это означает вот что - у точки K - середины DE, - равны степени относительно этих окружностей, то есть KG*KD = KF*KE; поскольку KE = KD, KF = KG; => EF = DG;)

по условию FG = 7; DE = 3; => EF = DG = 2;


В остроугольном треугольнике АBC проведены высоты BD и СЕ, из вершин В и С на прямую ЕD опущены перп

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Назовите градусную меру угла, на который поворачивается минутная стрелка в течение 20 минут
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

ikalabuhova
klimenokvapeshop1408
dvbbdv4
КристинаАлександр
Светлана308
Vasilevich
Maksimova-Shorokhov303
Albina
ainred
taksa6444
compm
zagadka27
Sharap
Olybetezina1973
Plotnikovangav