1.
дан параллелограмм
a=6 см
b=8 см
угол bad=30⁰
s-?
s=a*b*sinα
s=6*8*sin30=48*1/2=24 см²
2.
дан ромб
d1: d2=2: 3
d1+d2=25
s-?
s=d1*d2\2
пусть x - длина, тогда d1-2x, a d2=3x
составим уравнение:
2x+3x=25
5x=25
x=5
значит d1=10, d2=15
s=10*15/2=75 см²
доказать: ∠1=∠а+∠в. так как сумма углов треугольника равна 180º, ∠а+∠в+∠с=180º.следовательно, ∠с=180º-(∠а+∠в). ∠1 и ∠с (∠асв) — смежные, поэтому их сумма равна 180º, значит, ∠1=180º-∠с=180º-(180º-(∠а+∠в))=180º-180º+(∠а+∠в)=∠а+∠в.
Поделитесь своими знаниями, ответьте на вопрос:
№1)стороны параллелограмма равна 6см и 8 см, а угол между ними равен 30 градусов.найдите площадь параллелограмма №2)диагонали ромба относятся как 2: 3, а их сумма равна 25 см.найдите площадь ромба.
1)площадь параллелограмма s = a*h, где а - основание параллелограмма, h - высота
высоту параллелограма найдем из прямоугольного треугольника с гипотенузой равной 6 и уголом 30 градусов. используя правило, что катет, лежащий против угла в 30 градусов равен половине гипотенузы находим высоту параллелограмма, равную 6: 2 = 3 см. тогда площадь параллелограмма равна s = a*h = 8*3 = 24 см.
2) площадь ромба s = 0.5*d1*d2
d1 =
2/3*d2
d2=15
d1 = 10
s=0.5*15*10=75