Batrakova-Anna
?>

Дано: прямая призма, ab=8см, ab=bc, c1c=10см, найти s бок

Геометрия

Ответы

perminovaea
) ABCDA1B1C1D1 - прямая призма, основание - ромб ABCD; ∠BAD = 60°; H = AA1 = 10
AB = BC = CD = AD = a; P = 4a = S(бок) /H = 24; a = 6
треугольники ABD и BCD - равносторонние
S(сеч) = S(BDD1B1) = BD·H = 6·10 = 60 (см²)
2) Если все боковые ребра пирамиды наклонены к плоскости основания (прямоугольный треугольник ABC, ∠B = 90) под одинаковым углом (90 - 45 = 45), то около основания такой пирамиды можно описать окружность, а высота, опущенная из вершины на основание, падает в центр (точка O, лежит на середине гипотенузы) описанной около основания окружности.
AC = 2·4·tg(45) = 8
BC = AC·cos(30) = 4√3
AB = AC·sin(30) = 4
OH⊥AB; OH = BC/2 = 2√3
OK⊥BC; OK = AB/2 = 2
DH = √(OD² + OH²) = 2√7
DK = √(OD² + OK²) = 2√5
S(бок) = (1/2)(8·4 + (2√7)·4 + (2√5)·(4√3)) = 4(4 + √7 + √15) (см²) надеюсь
Татьяна1252

При пересечении двух прямых образуется по два смежных угла и по два вертикальных угла. Сумма двух смежных углов равна 180 градусов. Вертикальные углы равны между собой. С условия задачи известна градусная мера двух углов, которые образовались при пересечении двух прямых, то есть — это сумма двух вертикальных углов. ответим на вопрос задачи.

1). Найдем углы, образованные при пересечении двух прямых.

(360 - 104) / 2 = 256 / 2 = 128 градусов.

ответ: При пересечении двух прямых, образовалось 4 угла, градусная мера которых равна 52, 52, 128, 128 градусов

dima-pashkovec
Дано:

Два шара.

Радиусы шаров равны 8,8 см и 6,6 см.

Найти:

Радиус шара, площадь поверхности которого равна сумме площадей их поверхностей - ?

Решение:

Пусть R₁ - радиус одного шара (8,8 см), тогда R₂ - радиус другого шара (6,6 см).

Также R₃ - неизвестный радиус шара, площадь поверхности которого равна сумме площадей поверхностей изначально данных шаров.

S полн поверхности = 4πR²

S полн поверхности (R₁) = π(4 * 8,8²) = 309,76π см²

S полн поверхности (R₂) = π(4 * 6,6²) = 174,24π см².

Итак, по условию сказано, что есть какой-то шар, площадь поверхности которого равна сумме площадей поверхности изначально данных шаров.

⇒ S полн поверхности (R₃) = 309,76π + 174,24π = 484π см².

S полн поверхности (R₃) = 4πR² = 484π см² ⇒ R = √(484/4) = √121 = 11 см.

Итак, R₃ = 11 см.

ответ: 11 см.

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Дано: прямая призма, ab=8см, ab=bc, c1c=10см, найти s бок
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

Некрасова-И
slipu817838
Svetlana
Игоревна Худанов1150
АлександрАнатолий
mgrunova
TrofimovAnastasiya828
sawa-msk
Михеев557
P7Y7V7
beliaeva2
Горностаева831
MAXIM76748
rvvrps
nanasergevn