ответ: 10
Объяснение:
Сделаем рисунок 1 согласно условию задачи.
Проведем через О и С диаметр КМ, КО=ОМ=R.
КC=R+5, CM=R-5.
По т. о пересекающихся хордах ( а диаметр - наибольшая хорда окружности) при пересечении двух хорд окружности произведение отрезков одной хорды равно произведению отрезков другой хорды: АС•СВ=КС•СМ
15•5=(R+5)•(R-5) ⇒
R²-25=75
R²=100
R=10⇒
КМ=2R=20. Но АВ=АС+ВС=15+5=20. Следовательно, АВ - диаметр данной окружности, и рисунок должен выглядеть несколько иначе (см.рис.2. )
1 есть такое соотношение: квадрат высоты прямоугольного треугольника равен произведению отрезков гипотенузы
значит, h² = 16 · 9 = 144, откуда h = 12.
Сделав чертеж, можно заметить, что теперь в меньшем треугольнике гипотенуза - это и есть наш меньший катет. Найдем его по теореме Пифагора: 12² + 9² = 144 + 81 = 225, откуда меньший катет равен 15.
ответ: 15 см.
2 это просто 1 вариант ту задачу не помню
(1))25*25+60*60=4225
Корень из 4225 равен 65 см
ответ: 65см:
3 Нужно нарисовать треугольник. Расстояние от данной точки до прямой - это высота данного треугольника. Эта высота разбивает данный треугольник на два прямоугольных, у которых известно по одному катету (9 и 16 см).
Наклонные - это гипотенузы полученных прямоугольных треугольников (Обозначим их длины через х и х+5).
А высота исходного треугольника - это общий катет этих двух прямоугольных.
Выразим этот катет из обоих треугольников с теоремы Пифагора:
х² - 81 = (х + 5)² - 256
х² - 81 = х² + 10х + 25 - 256
х² - 81 = х² + 10х - 231
10х = 150
х = 15
Мы нашли одну из наклонных. А теперь находим то самое расстояние от точки (высота исходного треугольника или катет любого из 2х прямоугольных):
225 - 81 = а² (где а - та самая высота)
а² = 144
а = 12
ответ 12
Поделитесь своими знаниями, ответьте на вопрос:
На отрезке ав длиной 20см отмечена точка с. найти длины отрезков ас и вс, если отрезков ас на 4см длиннее отрезка вс
тогда АС= х+4
х+х+4=20
2х+4=20
2х=16
х=8
АС=8+4=12
проверим:
12+8=20