∠ABC = 67°
Объяснение:
Дано: ΔABC - прямоугольный
∠C=90°
СО - биссектриса
CH - высота
∠OCH = 22°
Найти: бОльший угол ΔABC
Т.к. биссектриса делит угол пополам, а она проведена из прямого угла,следовательно ∠ACO=∠OCB=90°:2=45°
Угол ∠OCB состоит из углов ∠OCH и ∠HCB. Из этого мы делаем вывод,что ∠HCB=∠OCB-∠OCH = 45°-22°=23°
ΔСНВ - прямоугольный,т.к. CH - высота. Из этого ∠ABC=90°-∠HCB=90°-23°=67°
ΔСНВ - прямоугольный(по условию).Из этого ∠ВАC=90°-∠ABC=90°-67°=23°
Мы видим, что ∠ABC > ∠ВАC => в ответ пишем градусную меру угла ∠ABC
60° и 120°
Объяснение:
1). Дано: АВСД - ромб; АС=6√3 см; ВД=18 см.
Найти углы ромба.
Решение: Так как диагонали ромба взаимно перпендикулярны и точкой пересечения делятся пополам, то имеем четыре равных прямоугольных Δ-а: АВО, СВО, АДО и СДО (где т.О - точка пересечения диагоналей).
Рассмотрим один из них - ΔАВО: ∠АОВ=90°, АО=АС÷2=3√3 см, ВО=ВД÷2=9 см. Используя теорему Пифагора, узнаем длину гипотенузы АВ: АВ²=АО²+ВО²=(3√3)²+9²=9×3+81=108=27×4=3×9×4=6√3 см.
Мы имеем гипотенузу АВ в два раза бОльшую, чем катет АО, что согласно свойству прямоугольного треугольника позволяет нам сделать вывод, что ∠АВО=30°. Тогда ∠ВАО=180-90-30=60°.
Из равенства треугольников следует равенство соответствующих углов, что даёт результат: ∠ВАС=∠ВСД=60×2=120°, ∠АВС=∠АДС=30×2=60°. Задача решена.
Примечание: Определив длину гипотенузы, мы можем обратить внимание, что АВ=АС, т.е. каждая из сторон ромба (которые равны между собой по определению) равна меньшей диагонали. Значит, ΔАВС=ΔАДС, они равносторонние, и их углы равны 60°. Что даёт нам те же 60 и 120 градусов углов ромба.
2. Абсолютно аналогично 1). получаем:
АВ²=5²+(5√3)²=25+75=100, АВ=10 см, что опять таки равно диагонали (или в два раза больше катета, кому как нравится). ⇒
∠В=∠Д=60°; ∠А=∠С=120°.
Поделитесь своими знаниями, ответьте на вопрос:
ОВ и СВ образуют плоскость ВОС. АС перпенд. ОВ. АС перпенд СВ по условию. Отсюда АС перпенд плоскости ВОС
2)ОВ перпенд альфа по условию. По признаку перпендикулярности плоскостей, если плоскость проходит через прямую, перпендикулярную другой плоскости, то эти плоскости перпендикулярны. Плоскость ВАО проходит через ВО. Значит плоскости перпендикулярны.
3)треуг СОВ прямоуг с катетами 3 и 4, "египетский". т.е.гипотенуза СВ=5 треуг АСВ -прямоуг с катетами 5 и 12, находим гипотенузу по т. Пифагора. АВ=