Ввозрастающей прогрессии разность пятого и первого членов равна 15 а разность четвёртого и второго членов равна 6. сумма всех членов прогрессии равна 127. определите число членов в данной прогрессии
Дана возрастающая геометрическая прогрессия: b₁,b₂,b3, b₄,b₅, ...Cоставим систему уравнений по условию задачи для нахождения b₁ и q. b₅ - b₁ = 15 и b₄ -b₂ = 6 (Эти уравнения надо объединить значком системы, но я не могу найти как это напечатать). Преобразуем эту систему: b₁ *q⁴ - b₁ = 15 и b₁ * q³ - b₁ * q =6 далее умножим второе уравнение на q: b₁ *q⁴ - b₁ = 15 и b₁ * q⁴ - b₁ * q =6 q далее вычтем из первого второе и выразим из него b₁: b₁ *q² - b₁ = 15 - 6q; b₁(q² - 1) = 15 - 6q b₁ = (15 - 6q)/(q² -1) Теперь найдем q из уравнения b₁ * q³ - b₁ * q =6 b₁ * q(q² - 1)=6 сделаем подстановку: (15 - 6q)/(q² -1) *q(q² - 1)=6 получим (15 - 6q) * q =6 раскрыть скобки и привести к стандартному виду 6q² - 15q + 6 =0 решаем квадратное уравнение относительно q и находим два корня q₁ = 2 и q₂ = 1/2 - этот корень посторонний, т.к. при таком знаменателе прогрессия является убывающей, что противоречит условию. Найдем теперь b₁ из b₁ *q⁴ - b₁ = 15 b₁ = 15/(q⁴ - 1) = 15/(16-1) =1 Зная, что сумма геом. прогрессии равна 127, найдем количество членов этой прогрессии. Sn = b₁ * (1-q^n)/(1-q) 127 =1 * (q^n -1)/(2-1); 127 =q^n -1; q^n=128=2⁷ Значит n=7 ответ: 7
kosstroy
27.02.2022
Треугольники AMC и BMC подобны. В подобных треугольниках углы попарно равны. ∠АМС=∠ВМС - по условию. ∠ВСМ≠∠АСМ в противном случае дуга АД была бы равной дуге АД, что в свою очередь ведет к равенству дуг СВД и САД. Из этого получим, что СД - диаметр окружности, перпендикулярный хорде. Тогда получим, что АМ=МВ, что противоречит условию задачи. Значит ∠ВСМ=∠САМ. Составим отношение сходственных сторон в подобных треугольниках. АС/СВ=СМ/МВ=АМ/СМ. В два последних отношения подставим известные данные, получим СМ/9=4/СМ, СМ²=36, СМ=6 Если две хорды окружности, AB и CD пересекаются в точке M, то произведение отрезков одной хорды равно произведению отрезков другой хорды. АМ*МВ=СМ*МВ
4*9=6*х, х=6 СД=СМ+МД=6+6=12(см)
козлов
27.02.2022
Если соединить заданную точку с вершинами треугольника, то получим 3 треугольника с боковыми сторонами 3, 4 и 5 и с равными основаниями. По теореме косинусов составим 3 уравнения, выразив основания "а" через боковые стороны и угол при вершине. а² = 3²+4²-2*3*4*cosα = 25 - 24*cosα a² = 4²+5²-2*4*5*cosβ = 41 - 40*cosβ a² = 5²+3²-2*5*3*cosω = 34 - 30*cosω Получаем 4 неизвестных: а, α, β и ω. Поэтому добавляем четвёртое уравнение: α + β + ω = 2π. Ниже приведено решение системы этих уравнений методом итераций: α градус α радиан cos α a² = a = 25 24 150.0020 2.6180 -0.8660 45.7850 6.7665 41 40 96.8676 1.6907 -0.1196 45.7830 6.7663 34 30 113.1304 1.9745 -0.3928 45.7848 6.7664. С точностью до третьего знака получаем значение стороны равностороннего треугольника, равной 6,766 единиц.
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Ввозрастающей прогрессии разность пятого и первого членов равна 15 а разность четвёртого и второго членов равна 6. сумма всех членов прогрессии равна 127. определите число членов в данной прогрессии
b₅ - b₁ = 15 и b₄ -b₂ = 6 (Эти уравнения надо объединить значком системы, но я не могу найти как это напечатать). Преобразуем эту систему:
b₁ *q⁴ - b₁ = 15 и b₁ * q³ - b₁ * q =6 далее умножим второе уравнение на q:
b₁ *q⁴ - b₁ = 15 и b₁ * q⁴ - b₁ * q =6 q далее вычтем из первого второе и выразим из него b₁: b₁ *q² - b₁ = 15 - 6q; b₁(q² - 1) = 15 - 6q
b₁ = (15 - 6q)/(q² -1) Теперь найдем q из уравнения b₁ * q³ - b₁ * q =6
b₁ * q(q² - 1)=6 сделаем подстановку: (15 - 6q)/(q² -1) *q(q² - 1)=6 получим
(15 - 6q) * q =6 раскрыть скобки и привести к стандартному виду
6q² - 15q + 6 =0 решаем квадратное уравнение относительно q и находим два корня q₁ = 2 и q₂ = 1/2 - этот корень посторонний, т.к. при таком знаменателе прогрессия является убывающей, что противоречит условию. Найдем теперь b₁ из b₁ *q⁴ - b₁ = 15 b₁ = 15/(q⁴ - 1) = 15/(16-1) =1
Зная, что сумма геом. прогрессии равна 127, найдем количество членов этой прогрессии. Sn = b₁ * (1-q^n)/(1-q)
127 =1 * (q^n -1)/(2-1); 127 =q^n -1; q^n=128=2⁷ Значит n=7
ответ: 7