S = ah Сторона параллелограмма = х , вторая сторона = р - х S = x·h1 S = (p - x)·h2 x·h1 = (p - x)·h2 x·h1 = p·h2 - x·h2 x·h1 + x·h2 = p·h2 x(h1 + h2) = p·h2 x = p·h2/(h1 + h2) S= p·h1 h2/(h1 + h2)
semenov-1970
24.08.2020
Проведем диагонали параллелограмма. Рассмотрим треугольники ВДС и КЕС. ВС:КС=12:3=4:1 СД:СЕ=8:2=4:1 Стороны треугольниов ВСД и КСЕ пропорциональны и имеют общий угол. Второй признак подобия треугольников: Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника и углы, заключенные между этими сторонами, равны, то такие треугольники подобны. Треугольники ВСД и КСЕ подобны,⇒ углы при КЕ и ВД соответственно равны, ⇒КЕ параллельна ВД. Проведем через А прямую, параллельную ВД. Продлим стороны СВ и СД до пересечения с этой прямой в точках М и Н соответсвенно. ВД- средняя линия В треугольника МСН , т.к. параллельна МН и делит АС пополам. ⇒МС=ВС*2=24 см МК=МС-КС=24-3=21 см АР:РС=МК:КС АР:РС=21:3=7:1 ------------- [email protected]
Varvara
24.08.2020
AB=BC=40; BH=4√91
Биссектриса треугольника делит сторону на отрезки, пропорциональные прилежащим сторонам. AA1/A1B= AC/BC C1C/BC1= AC/AB AB=BC => AA1/A1B= C1C/BC1 Если прямые отсекают на секущих пропорциональные отрезки, то прямые параллельны. AC||A1C1
△ABC~△A1BC1 (углы при основаниях равны как соответственные при AC||A1C1) k= AC/A1C1 =AB/A1B
AH=√(AB^2 -BH^2) =√(1600 -16*91) =12 Высота в равнобедренном треугольнике является медианой. AC=2AH =12*2 =24
Сторона параллелограмма = х , вторая сторона = р - х
S = x·h1
S = (p - x)·h2
x·h1 = (p - x)·h2
x·h1 = p·h2 - x·h2
x·h1 + x·h2 = p·h2
x(h1 + h2) = p·h2
x = p·h2/(h1 + h2)
S= p·h1 h2/(h1 + h2)