Пирамида MABCD, основание - прямоугольник ABCD: AD=BC=18 см; AB=CD=10 см; O- точка пересечения диагоналей AС и BD, MO - высота пирамиды. Так как у прямоугольника диагонали равны и точкой пересечения делятся пополам, то OA = OB = OC = OD - это проекции боковых ребер на основание. Проекции наклонных равны, следовательно, наклонные тоже равны : AM = BM = CM = DM - боковые ребра пирамиды. Тогда ΔAMD = ΔBMC - по трём равным сторонам, ΔAMB = ΔDMC - по трём равным сторонам. Проведем KT║AD ⇒ OK=OT=AD/2 = 18/2 = 9 смΔMOT - прямоугольный, теорема ПифагораMT² = MO² OT² = 12² 9² = 144 81=225 = 15²MT = 15 см см²Проведем FG║DC ⇒ OG=OF=DC/2 = 10/2 = 5 смΔMOF - прямоугольный, теорема ПифагораMF² = MO² OF² = 12² 5² = 144 25 = 169 = 13²MF = 13 см см²Площадь боковой поверхности пирамиды см²Sбок = 384 см²Площадь основания см²Площадь полной поверхности пирамиды S = 384 180 = 564 см²
Определи взаимное расположение данной прямой и плоскости.
1. Прямая AA1 и плоскость (BCD): плоскость (BCD) это грань нижнего основания , которую АА1 пересекает в точке А. Пересекаются.
2. Прямая BC и плоскость (AA1B1): плоскость (АА1В1) это боковая левая грань АА1В1В , которую ВС пересекает в точке В . Пересекаются.
3. Прямая CC1 и плоскость (CDD1):плоскость (CDD1) это боковая правая грань CDD1C1 , в которой СС1 лежит. Принадлежит.
4. Прямая CB1 и плоскость (BB1C1):Аналогично п.4 Принадлежит.
5. Прямая AB1 и плоскость (BCD): плоскость (BCD) это грань нижнего основания , которую ВВ1 пересекает в точке В. Пересекают .
Поделитесь своими знаниями, ответьте на вопрос:
Две стороны треугольника равны соответственно 3 см и 8 см, а угол между ними 60• .найдите третью сторону треугольника