1. S= 1\2*(высота*основание). 1\2*(6*12)=72\2=56см в кубе.
2.Гипотенуза по теореме Пифагора=10, S=1\2*(катет*катет2)=48\2=24см в кубе.
3.Найдем катет по теореме Пифагора одного из треугольников (BCO). =5. P=5(катет)*4(кол-во сторон)=20см. S= сначала одного треугольника. 1\2*(4*3)(по половине диагоналей)=12:2=6см в кубе. 6*4(количество треугольников в ромбе)=24см в кубе.
4.Так как острый угол трапеции - 45 град, треугольник СНК - равнобедренный. По теореме Пифагора найдем катеты
2х²=(3√2)²
2х²=18
х²=9
х=3
Тогда основания трапеции: ВС=3 АК=2*3=6 Высота СН=3
Можем вычислить площадь трапеции
S=(3+6)*3/2
S=13.5см в кубе.
ух, есть!
Задача на подобие треугольников и теоремы о параллельных плоскостях и прямых.
Проведем через точку М, А2 и В2 плоскость.
А1В1 параллельна А2В2 как линии пересечения параллельных плоскостей третьей плоскостью.
Остюда треугольники МА2В2 и МА1В1 подобны.
Примем отрезок МВ1 за х
Тогда МВ2=9+х,
МА2=9+х+4
4:(13+х)=х:(9+х)
36+4х=13х+х²
х²+9х-36=0
При необходимости полное решение квадратного уравнения запишете самостоятельно, а корни его 3 и -12. Второй корень не подходит.
х=3 см
МВ2=9+3=12 см
МА2=12+4=16 см
Поделитесь своими знаниями, ответьте на вопрос:
Стороны прямоугольника abcd равны 24 и 10 см am перпендикуляр к его плоскости прямая mc наклонена к плоскости прямоугольника под углом 30 найдите длину перпендикуляра am