ivan-chay19
?>

Втреугольнике cde точка к лежит на отрезке се, причем угол ckd острый угол. докажите, что de больше dk

Геометрия

Ответы

olyafom1234
Т.к. отрезки DE и DK берут начало в одной точке D, а конец отрезка DE (тоесть точка E) находится дальше от вершины C, чем конец отрезка DK (тоесть точка K), и при том <CKD-острый, то отрезок DE больше отрезка DK. Если бы <CKD был тупым, то тогда бы отрезок DK был больше отрезка DE.
ответ: DE больше DK.
Втреугольнике cde точка к лежит на отрезке се, причем угол ckd острый угол. докажите, что de больше
fucingprinces30

Построение сводится к проведению перпендикуляра из  точки к прямой. 

Из вершины А, как из центра,  раствором циркуля, равным АС, делаем насечку на стороне ВС. Обозначим  эту точку К.

∆ КАС- равнобедренный с равными сторонами АК=АС.

Разделив КС пополам, получим точку М, в которой медиана ∆ КАС пересекается с основанием КС. Т.к. в равнобедренном треугольнике медиана=биссектриса=высота, отрезок АМ будет искомой высотой. 

Для этого из точек К и С, как из центра,  одним и тем же раствором циркуля ( больше половины КС) проведем две полуокружности. Соединим точки их пересечения с А. 

Отрезок АМ разделил КС пополам и является  искомой высотой ∆ АВС из вершины угла А. 

severbykova
>>> идёт оформление рисунка <<< ожидайте ...

Задача решается через векторы.
Построим вектор \overline{AB} ( (-1)-(-9) , 4-10 ) = \overline{AB} ( 8 , -6 ) ;

Середина D отрезка AB может быть найдена откладыванием половины вектора \overline{AB} от точки A

\frac{1}{2} \overline{AB} = \overline{ ( 4 , -3 ) } ;

Итак D( -9+4, 10-3 ) = D( -5, 7 ) ;

От точки D нужно отложить вектор высоты \overline{h} в обе возможные стороны

Вектор высоты \overline{h} перпендикулярен вектору основания \overline{AB}, а значит его проекции накрест-пропорциональны с противоположным знаком:

(I) \frac{x_h}{y_h} = -\frac{ y_{AB} }{ x_{AB} }, что непосредственно следует из скалярного произведения, поскольку для перпендикулярных векторов должно выполняться: x_h * x_{AB} + y_h * x_{AB} = 0 (II) ;

Таким образом вектор \overline{h} пропорционален вектору \overline{h_o} ( 3 , 4 ) , поскольку для вектора \overline{h_o} выполняется и равенство (I) и равенство (II) осталось лишь найти масштаб вектора \overline{h} ;

Вектор \overline{h_o} имеет длину h_o = \sqrt{ x_{ho}^2 + y_{ho}^2 } = \sqrt{ 3^2 + 4^2 } = \sqrt{ 25 } = 5 ;

Аналогично, AB = 10

При этом, поскольу треугольник равносторонний, то значит его высота составляет h = \frac{ \sqrt{3} }{2}AB, т.к \cos{ 60^o } = \frac{ \sqrt{3} }{2} ;

Значит h = 5 \sqrt{3}, а стало быть h = \sqrt{3} h_o ;

В итоге \overline{h} ( 3\sqrt{3} , 4\sqrt{3} ).

Откладываем этот вектор в разные стороны (+\-) от точки D( -5, 7 ) и получаем:

ОТВЕТ:

C_1 ( 3\sqrt{3} - 5 , 7 + 4\sqrt{3} ) /// примечание: 3\sqrt{3} 5 ;

C_2 ( - 3\sqrt{3} -5 , 7 - 4\sqrt{3} ) /// примечание: 4\sqrt{3} < 7 .

Вычислить координаты вершины с равностороннего треугольника авс, если даны координаты а(-9,10), в(-1

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Втреугольнике cde точка к лежит на отрезке се, причем угол ckd острый угол. докажите, что de больше dk
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

propercarwashes275
vvb1383
danielianruz
annarom1306
milenaochirova01017424
titov-es3095
etv771370
la-ronde737
sveremeev816
zoyalexa495
gbnn90
Irina-Tunyan
Takhmina-Komarova1415
mayskiyandrey90
Мария-Кострыгина175