1) т.к. сумма углов треугольника=180*, то угол А=180-(82+40)=58*
2) т.к. СС1-биссектриса угла С, то угол С1СВ и угол С1СА=20*
3) т.к. АА1-биссектриса угла А, то угол ВАА1 и угол А1АС=29*
4) т.к. сумма углов треугольника=180*, то угол ВС1С=180-(82+20)=78*
5) т.к. сумма углов треугольника=180*, то угол ВА1А=180-(82+29)=69*
6) из 2 пункта следует, что угол С1СА=20*
из 3 пункта следует, что угол А1АС=29*
7) т.к. сумма углов треугольника=180*, то из 6 пункта следует, что угол АМС=180-(29+20)=131*
8) т.к. угол АМС и угол С1МА1 вертикальные, следовательно они равны, следовательно угол С1МА1=131*
Или так:1) угол С1СА=40:2=20
уголМАС=(180-82-40):2=29
уголС1МА1=углуАМС=180-20-29=131
2)угол ВС1С=180-20-82=78
3)угол ВА1М=360-78-131-82=69
Задание 2. а)Угол КАВ, образованный касательной АК и хордой АВ, проходящей через точку касания А, равен половине величины дуги АВ, заключённой между его сторонами, центральный угол АОВ тоже опирается на дугу АВ, а угол АСВ- вписанный угол, опирающийся на дугу АВ, поэтому равен половине величины центрального угла.
б)Т.о., углы АСВ и КАВ равны. А т.к. АК и КВ - отрезки касательных, проведенных из одной точки к одной окружности, то АК=КВ, т.е. ΔКАВ- равнобедренный.
в) т.к. по условию АС║КВ, то по свойству внутренних накрест лежащих при указанных параллельных прямых и секущей АВ ∠АВК=∠ВАС. значит, по двум углам треугольники КАВ и АСВ подобны, значит, сходственные стороны у них пропорциональны. АВ/ВС=АК/АС=к- коэффициент пропорциональности , Площадь треугольника АВС равна ВС*АС*sin∠ACB; площадь треугольника КАВ равна
АК*АВ*sin∠КАВ. Синусы равных углов равны. Отношение площадей (АК*АВ*sin∠КАВ)/(BC*АС*sin∠ACB)=АК*АВ/ВС*АС=к²; получается, что от угла не зависит отношение. Это для любого треугольника, а если к тому же треугольник АВС равнобедренный с основанием АВ, то все углы в нем по 60°, т.е. он получается равносторонним. т.е. угол и выбирать не надо по этому условию он уже определен. А из того, что угол равен 60°, следует равенство данных треугольников, значит, отношение их площадей равно единице.
Поделитесь своими знаниями, ответьте на вопрос:
На окружности с центром точке о отмечены точки а и б найдите угол аоб если угол оба равен 36 градусов
ответ: <АОВ=108°.