Вычислить площадь сечения можно, если определим радиус сечения. Радиус шара, радиус сечения и расстояние d связаны теоремой Пифагора. r = √(R²-d²) = √(12²-8²) = √80. Теперь ищем площадь сечения по формуле S=πr² = =π(√80)² = 80π см².
vera-sherepa231
01.10.2021
Параллелограмм АВСД, АМ и ДМ - биссектрисы углов А и Д. УголА=уголС, уголВ=уголД, уголА+уголД=180, 1/2уголА+1/2уголД=180/2=90, треугольник АМД, уголАМД=180-(1/2уголА+1/2уголД)=180-90=90, треугольник АМД прямоугольный, АМ перпендикулярна МД и НД (Н - вместоN), только в равнобедренном треугольнике биссектриса=высоте, АМ-биссектриса=высота=медиана, АН=АД=10, уголАНД=уголАДН, уголВАМ=уголМАД, уголМАД=уголАМВ - как внутренние разносторонние, треугольник АВМ равнобедренный, АВ=ВМ, уголАДМ=уголВМН как соответственные=уголАНД, треугольник ВНМ равнобедренный, ВМ=ВН=АВ, Треугольник АНМ прямоугольный, ВМ-медиана=1/2 гипотенузы АН=10/2=5, АВ=СД=5, периметр=5+10+5+10=30
konstantin0112
01.10.2021
1)Обозначим вершины ромба буквами латинского алфавита A, B, C и D для удобства обсуждения. Точку пересечения диагоналей традиционно обозначают буквой O. Длину ребра ромба обозначим буквой a. Величину угла BCD, который равен углу BAD, обозначим α. . 2)Найдем величину короткой диагонали. Так как диагонали пересекаются под прямым углом, то треугольник COD является прямоугольным. Половина короткой диагонали OD является катетом этого треугольника и может быть найдена через гипотенузу CD, а также угол OCD. Диагонали ромба являются также биссектрисами его углов, поэтому угол OCD равен α/2. Таким образом, OD = BD/2 = CD*sin(α/2). То есть, короткая диагональ BD = 2a*sin(α/2).
3)Аналогичным образом, из того, что треугольник COD прямоугольный, можем выразить величину OC (а это половина длинной диагонали). OC = AC/2 = CD*cos(α/2) Величина длинной диагонали выражается следующим образом: AC =2a*cos(α/2)
Радиус шара, радиус сечения и расстояние d связаны теоремой Пифагора. r = √(R²-d²) = √(12²-8²) = √80.
Теперь ищем площадь сечения по формуле S=πr² =
=π(√80)² = 80π см².