3) они параллельны, потому что они перпендикулярны прямой b
4) MN и EP параллельны потому что треугольники вертикальные,а MN и EP основание треугольников.
9) прямые параллельны,потому что прямая b идет как основание,а прямая а проведена расположен на ровно над вершиной треугольника
10) прямые параллельны,потому что они расположены напротив друг друга и образуют прямоугольник
11)прямые параллельны потому что АВ и СД основание вертикальных треугольников
12) прямые параллельны потому что прямая м идет как основание а прямая н идет поверх вершины
Площадь основания - ромба - 18*24/2=216
Площадь боковой поверхности = Площадь фигуры - 2*площадь основания = 642-2*216=210
Боковых граней 4, значит площадь поверхности боковой грани = 210/4=52,5 У прямой призмы боковые грани - прямоугольники.
Сторона ромба вычисляется по теореме Пифагора, где за прямоугольный треугольник берём четверть от ромба, то есть длины катетов будут равны половине длин диагоналей ромба: 9 и 12. Сторона ромба = sqrt(9^2+12^2)=15
Значит, одна из сторон боковой грани = 15, а площадь стороны = 52,5
Искомая длина бокового ребра призмы = 52,5/15 = 3,5
Поделитесь своими знаниями, ответьте на вопрос:
Ам биссектриса треугольника авс. найдите площадь треугольника авм, если ав = 8, вс = 7, ас = 6.
Следовательно, отрезок ВМ=4.
В треугольнике АВС по теореме косинусов: "Квадрат стороны треугольника равен сумме квадратов двух других сторон минус удвоенное произведение этих сторон на косинус угла между ними"
Cosα = (b²+c²-a²)/2bc. (угол α - между b и c). В нашем случае:
CosВ=(64+49-36)/2*8*7=11/16. Формула приведения: Sin²α+Cos²α=1.
Тогда SinВ=√(1-121/16²)=√135/16.
Площадь треугольника АВМ
Sabm=(1/2)*АВ*ВМ*SinB=(1/2)8*4*√135/16=√135.
ответ: Sabm=√135.