Рассмотрим треугольники авс и mnc. они подобны по второму признаку подобия: две стороны одного треугольника пропорциональны двум сторонам другого треугольника и углы, заключенные между этими сторонами, равны: - cn : cb = cm : ca = 9 : 12 = 12 : 16 = 3 : 4 (коэф. подобия 3/4); - угол с - общий для треугольников. у подобных треугольников соответственные углы вас и nmc равны. они являются также соответственными углами при пересечении двух прямых ав и mn секущей ас. используем один из признаков параллельности двух прямых: если при пересечении двух прямых секущей соответственные углы равны, то прямые параллельны. значит, ab ii mn.
Struev730
13.08.2021
Вершины треугольника - это концы соответствующих векторов. Пусть вектор а = вектор ВС, вектор b=вектор АС и вектор с=векторАВ. Найдем координаты векторов. Координаты вектора равны разности соответствующих координат точек его конца и начала. Тогда вектор а(Хс-Хb;Yc-Yb)=a(0-14;14-12)=a(-14;2). Вектор b(Хс-Хa;Yc-Ya)=b(0-(-2);14-0)=b(2;14). Вектор c (Хb-Хa;Yb-Ya)=с(14-(-2);12-0)=с(16;12). Найдем длины сторон треугольника (модули векторов а, b и с). Модуль или длина вектора: |a|=√(Хa²+Ya²). Тогда |a|=√(Хa²+Ya²)=√(196+4)=10√2. |b|=√(Хb²+Yb²)=√(4+196)=10√2. |c|=√(Хc²+Yc²)=√(286+144)=20. Формула радиуса описанной окружности: R=a*b*c/4S, где a,b,c -стороны треугольника, р - его полупериметр. В нашем случае полупериметр равен 10+10√2. Тогда по формуле Герона: S=√[(10+10√2)*10*10*[(10√2)²-10²)] или S=100. R=a*b*c/4S=(10√2*10√2*20)/(4*100)=10. Площадь круга равна Sк=πR². В нашем случае Sк=π*100. ответ: S=100π.
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Найдите площадь а) параллелограмма, б)треугольника по двум сторонам и углу между ними: 4)а=4/3м, b=3/4м, альфа=30 градусов
б) S=0,5·4/3·3/4·0,5=0,25 м².