Свойство пересекающихся хорд: Произведения длин отрезков, на которые разбита точкой пересечения каждая из хорд, равны. Пусть это будут хорды АВ и СМ, Е -точка их пересечения. АЕ=ВЕ, СЕ=3, МЕ=12 Сделаем рисунок. Соединим А и М, С и В. Рассмотрим получившиеся треугольники АЕМ и ВЕС Они имеют два угла, опирающихся на одну и ту же дугу, следовательно, эти углы равны. Третий их угол также равен. ⇒ Треугольники АЕМ и ВЕС подобны Из подобия следует отношение: АЕ:СЕ=МЕ:ВЕ АЕ*ВЕ=СЕ*МЕ Так как АЕ=ВЕ, то АЕ²=3*12=36 АЕ=√36=6, АВ=2 АЕ=12 см
Юрий197
17.04.2022
Если равны углы при диагонали, то один из треугольников, образуемых данной диагональю, является равнобедренным. Следовательно большее основание равно обеим боковым сторонам.
Пусть основание - х. P = 3+х+х+х 3+3х = 42 3х = 39 х = 13 - большее основание. меньшая часть основания, отсекаемого высотой, равна: (13-3):2 = 5 находим высоту равнобедренной трапеции - по теореме пифагора в треугольнике, составленным высотой, боковой гранью и меньшей частью основания, отсекаемой этой высотой. h = √(13 ²-5²) = √144 = 12 находим площадь: S = 1\2(a+b)*h = 1\2(3+13)*12 = 192\2 = 96
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Точка м лежит на прямой ab причем длинна отрезка ab=75см и am=4mb сделайте чертеж найдите ам