yusliva
?>

Висота прямокутного трикутника проведена з вершини прямого кута, дорівнює h, а відстань від вершини прямого кута до точки перетину бісектриси меншого гострого кута з меншим катетом дорівнює d. визначити довжину меншого катета й обчилити його значення, якщо h=7, d=5.

Геометрия

Ответы

dovgash2
Задача составлена некорректно, но вычислить размер меньшего катета можно.

По условию d=СM=5, h=CK=7, АС - меньший катет и ∠В - меньший из острых.
СК=АС·ВС/АВ ⇒⇒ СК/АС=ВС/АВ.
По теореме биссектрис СМ/АМ=ВС/АВ. Объединим два уравнения:
СК/АС=СМ/АМ,
АС=СК·АМ/СМ=СК·(АС-СМ)/СМ=h(AC-d)/d,
d·АС=h·АС-dh,
AC(h-d)=dh,
AC=dh/(h-d)=5·7/(7-5)=17.5, Не похоже, что это меньший из катетов, ведь высота СК=7, а это намного меньше этого катета. Найдём второй катет.
АМ=АС-СМ=[dh/(h-d)]-d=d²/(h-d), 
Опять, по т. биссектрис СМ/АМ=ВС/АВ,
АВ=АМ·ВС/СМ=d·BC/(h-d).
По теореме Пифагора АВ²=АС²+ВС²,
d²·BC²/(h-d)²=[d²h²/(h-d)²]+BC²,
(d²·BC²-BC²(h-d)²)/(h-d)²=d²h²/(h-d)²,
BC²=d²h²/(d²-(h-d)²),   
ВС=dh/√(d²-(h-d)²)=5·7/√(5²-(7-5)²)≈7.6,
ВС<АС, значит ВС - меньший из катетов.
ответ: 7.6 

Висота прямокутного трикутника проведена з вершини прямого кута, дорівнює h, а відстань від вершини
inj-anastasia8
Основаниями правильной треугольной призмы ABCA1B1C1 являются равные правильные треугольники со стороной а. 
Через сторону основания AB под углом 45° к плоскости основании призмы проведено сечение, пересекающее ребро CC1.

Треугольники DAC и DBC равны по двум сторонам и углу между ними:
AC=BC (как стороны правильного треугольника)
CD - общая сторона
∠ACD = ∠BCD = 90° (т.к. призма правильная)
⇒ AD = BD 
⇒ сечение - равнобедренный треугольник с основанием AB

В прямоугольном треугольнике ACD:
∠ACD = 90°
∠DAC = 45°
∠ADC = 180 - 90 - 45 = 45 (°)
⇒ треугольник ACD - прямоугольный равнобедренный с основанием-гипотенузой AD, боковыми сторонами - катетами AC = DC = a

по теореме Пифагора:
AD² = AC² + DC²
AD² = a² + a²
AD² = 2a²
AD = a√2 (см)

В равнобедренном треугольнике ABD:
DE - высота, а также медиана и биссектриса, проведенная к основанию ⇒ AE = AB/2
AE = a/2

В прямоугольном треугольнике ADE:
Гипотенуза AD = a√2
Катет AE = a/2

По теореме Пифагора
AD² = AE² + DE²
(a√2)² = (a/2)² + DE²
DE² = 2a² - a²/4
DE² = 8a²/4 - a²/4
DE² = 7a²/4
DE = √(7a²/4)

            a√7
DE = ---------- (см)
              2

S(ABD) = 1/2 * a * DE

                   1                  a√7         a * a√7           a²√7
S(ABD) = ------- *  a  * ---------- = --------------- = ------------ (см²)
                   2                    2            2 * 2                 4

Не соответствует ни одному из вариантов ответа. 
Через сторону основания правильной треугольной призмы под углом 45 к основанию проведено сечение пер
Irina1435
РАВНОСТОРОННИЙ КОНУС — прямой круговой конус, образующая которого равна диаметру основания.
Отсюда радиус R основания равен 20/2 = 10 дм.
Так как площадь сечения, проведённого через вершину конуса, отсекает в основании дугу в 60 градусов, то линия сечения основания и 2 радиуса образуют равносторонний треугольник со сторонами по 10 дм.
В сечении имеем равнобедренный треугольник с боковыми сторонами по 20 дм, в основании - 10 дм.
Высота h этого треугольника равна:
h = √(L² - (a/2)²) = √(400 - 25) = √375 = 5√15 дм.
Площадь S сечения равна:
S = (1/2)ah = (1/2)*10*5√15 = 25√15 дм².

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Висота прямокутного трикутника проведена з вершини прямого кута, дорівнює h, а відстань від вершини прямого кута до точки перетину бісектриси меншого гострого кута з меншим катетом дорівнює d. визначити довжину меншого катета й обчилити його значення, якщо h=7, d=5.
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

Kalmikova1666
puma802
sdy19576216
PoleshchukTatyana
kun1969
KovalenkoIL
Тариелович871
volodin-alexander
galereyaas1568
vasiliiparshin7668
ribanina
vadim330
praktikadok
zyf0066
Bella