Катеты прямоугольного треугольника равны 8 см и 15 см. вычисли: 1. радиус окружности, описанной около треугольника; 2. радиус окружности, вписанной в треугольник.
Найдём гипотенузу этого треугольника, используя теорему Пифагора: √15² + 8² = √225 + 64 = √289 = 17 см Радиус окружности, описанной около прямоугольника, равен половине гипотенузы. R = 1/2• 17 см = 8,5 см.
Радиус вписанной окружности в прямоугольный треугольник находится по формуле r = (a + b - c)/2, где а, b - катеты, с - гипотенуза r = (8 + 15 - 17)/2 = 3 см. ответ: R = 8,5 см; r = 3 см.
Кирилл-Анна1023
09.10.2021
Так как по условию xm+yn=5n, тоxm =(5-y)n если x не равно 0, то разделив левую и правую части уравнения на x, получим m =((5-y)/x) n, где ((5-y)/x) какое-то число.
По условию коллинеарности:Два вектора a и b коллинеарны, если существует число не равное нулю n такое, что a = n · b Следовательно, если a и b не коллинеарны то такого числа не существует. А в нашем примере такое число есть (при x не равном 0). Следовательно если x не равно 0, то векторы коллинеарны. А так как по условию они не коллинеарны, то x = 0. Тогда и y = 0. ответ: x = 0 и y = 0
fygasika
09.10.2021
Определения: "Прямоугольный параллелепипед — это параллелепипед, у которого все грани — прямоугольники. Углом между плоскостью и не перпендикулярной ей прямой называется угол между этой прямой и ее проекцией на данную плоскость." Объем прямоугольного параллелепипеда - произведение трех его измерений. В нашем случае высота параллелепипеда h равна 2√2 см (как катет, лежащий против угла 30°) Длина основания равна а=4√2*Sin45°=4 см. Ширина основания по Пифагору: b=√[(4√2*Cos30)²-4²]=√(24-16)=2√2 см. V=a*b*h=4*2√2*2√2=32 см³ Это ответ.
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Катеты прямоугольного треугольника равны 8 см и 15 см. вычисли: 1. радиус окружности, описанной около треугольника; 2. радиус окружности, вписанной в треугольник.
√15² + 8² = √225 + 64 = √289 = 17 см
Радиус окружности, описанной около прямоугольника, равен половине гипотенузы.
R = 1/2• 17 см = 8,5 см.
Радиус вписанной окружности в прямоугольный треугольник находится по формуле r = (a + b - c)/2, где а, b - катеты, с - гипотенуза
r = (8 + 15 - 17)/2 = 3 см.
ответ: R = 8,5 см; r = 3 см.