Рассмотрим получившиеся треугольники АВС и АДЕ: Угол А – общий. Углы АВС и АДЕ равны как соответственные углы образованные параллельными прямыми, пересеченными секущей Значит данные треугольники подобны по первому признаку подобия треугольников: Если два угла одного треугольника соответственно равны двум углам другого треугольника, то треугольники подобны. Сторона АЕ треугольника АДЕ равна АС+СЕ: АЕ=8+4=12 см. Зная это, мы можем найти коэффициент подобия треугольников: k=АЕ/АС=12/8=1,5 Найдем стороны треугольника АДЕ: АД=АВ*k=10*1.5=15 см. ДЕ=ВС*k=4*1,5=6 см. ВД=АД-АБ=15-10=5 см. ответ: ВД=5 см. ДЕ=6 см.
boykoz9
15.01.2020
И.п. пятьсот шестьдесят семь семьсот восемьдесят девять сто двадцать три р.д. пятисот шестидесяти семи семисот восьмидесяти девяти ста двадцати трёх д.п. пятистам шестидесяти семи семистам восьмидесяти девяти ста двадцати трём в.п. пятьсот шестьдесят семь семьсот восемьдесят девять сто двадцать три т.п. пятьюстами шестьюдесятью семью семьюстами восемьюдесятью девятью ста двадцатью тремя п.п. пятистах шестидесяти семи семистах восьмидесяти девяти ста двадцати трёх
АС= √АВ²+ВС² -2*АВ*ВС*cos 130°=
√25+9-30*(--0.6427876096)= √53,283628288= 7.3 cм