Объем конуса считается как площадь основания*высота/3 площадь основания считается как pi*радиус в квадрате радиус=диаметр/2=8 см высота= Объем = ответ:
kirill76536
12.03.2022
Сделаем рисунок и рассмотрим его. Пусть ВМ и АD пересекаются в точке Н. Медиана ВМ делит АС на два равных отрезка АМ=СМ. АМ=4:2=2 АН в треугольнике АВМ является высотой - угол АНВ - прямой , т.к. АD перпендикулярна ВМ. Но она же и медиана, т.к. по условию ВН=НМ, следовательно, треугольник ВАМ - равнобедренный ( в равнобедренном треугольнике медиана, высота и биссектриса, проведенные из вершины угла против основания - совпадают, и, наоборот, если медиана и высота треугольника равны, то этот треугольник - равнобедренный). АВ=АМ=2 ( с нескольких попыток не удалось загрузить рисунок, но он очень простой, несложно выполнитьсамостоятельно)
Natalya
12.03.2022
Для удобства обозначим треугольник АВС, где АС-основание, а АВ-искомая сторона. Из вершины В проводим высоту и называем ее ВD, а также медиану и называем ее ВЕ. В получившемся прямоугольном (т.к. BD-высота) треугольник ЕВD нам известна гипотенуза ВЕ=13см и противолежащий катет ВD=12см. Находи угол ВЕD: sinBED=12/13=0,923076, arcsinBED=67,38 градусов. Находим отрезок ED через cosBED=х/13. х=cosBED*13=cos(67,38)*13=5 см. Рассмотрим прямоугольный треугольник АВD. Сторона АD=АЕ+ЕD. Т.к. медиана ВЕ делит основание АС=60 см пополам, то отрезок АЕ=60/2=30 см. АD=30+5=35 см. Согласно теореме Пифагора в прямоугольном треугольнике АВD квадрат гипотенузы АВ равен сумме квадратов катетов ВD и АD, т.е. АВ=ВD+AD АВ= АВ= АВ===37 см.
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Образующая конуса равна 17 см, а диаметр его основания - 16 см. найти объем конуса.
площадь основания считается как pi*радиус в квадрате
радиус=диаметр/2=8 см
высота=
Объем =
ответ: